Liang Hao, Chiu Tzu-Hao, Kahlal Samia, Liao Jian-Hong, Liu C W, Saillard Jean-Yves
Univ Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
Nanoscale. 2025 Jan 29;17(5):2860-2870. doi: 10.1039/d4nr04862h.
Following several reports on ligand-protected atom-precise nanoclusters which encapsulate hydrides as interstitial dopants within their icosahedral core, the stability, structure and bonding of MH@Ag and MH@Au (M = Mo-Ag; W-Au) 8-electron cores is investigated through DFT calculations. The encapsulation of up to = 3 hydrides appears to be possible but at the cost of substantial structural distortions. In most of the computed models, the hydrides are found nearly free to move inside their icosahedral cages. Systems with one (-type) or two (-type) missing vertices on the icosahedron are also predicted to be viable. In general, the MH@Au species appear to be of lower stability than their MH@Ag homologs. We believe that this the work will provide some new directions for the synthesis of hydride-encapsulating superatoms.
在有几篇关于配体保护的原子精确纳米团簇的报道之后,这些纳米团簇在其二十面体核心内将氢化物作为间隙掺杂剂封装起来,通过密度泛函理论(DFT)计算研究了MH@Ag和MH@Au(M = Mo - Ag;W - Au)8电子核心的稳定性、结构和键合。封装多达 = 3个氢化物似乎是可能的,但代价是结构发生大量畸变。在大多数计算模型中,发现氢化物在其二十面体内几乎可以自由移动。二十面体上有一个(-型)或两个(-型)缺失顶点的体系也被预测是可行的。一般来说,MH@Au物种的稳定性似乎低于其对应的MH@Ag同系物。我们相信这项工作将为合成封装氢化物的超原子提供一些新的方向。