Suppr超能文献

用于皮肤腐蚀预测的结合指纹的循环神经网络比较分析

Comparative Analysis of Recurrent Neural Networks with Conjoint Fingerprints for Skin Corrosion Prediction.

作者信息

Duy Huynh Anh, Srisongkram Tarapong

机构信息

Graduate School in the Program of Research and Development in Pharmaceuticals, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.

Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.

出版信息

J Chem Inf Model. 2025 Feb 10;65(3):1305-1317. doi: 10.1021/acs.jcim.4c02062. Epub 2025 Jan 21.

Abstract

Skin corrosion assessment is an essential toxicity end point that addresses safety concerns for topical dosage forms and cosmetic products. Previously, skin corrosion assessments required animal testing; however, differences in skin architecture and ethical concerns regarding animal models have fostered the advancement of alternative methods such as and models. This study aimed to develop deep learning (DL) models based on recurrent neural networks (RNNs) for classifying skin corrosion of chemical compounds based on chemical language notation, molecular substructure, physicochemical properties, and a combination of these three properties called conjoint fingerprints. Simple RNN, long short-term memory, bidirectional long short-term memory (BiLSTM), gated recurrent units, and bidirectional gated recurrent units models, along with 11 molecular features, were employed to generate 55 RNN-based models. Applicability domain and permutation importance analysis were exploited for additional trustable prediction and explanation ability of the models, respectively. Our findings indicate that BiLSTM with conjoint features of MACCS keys and physicochemical descriptors is the most effective model with 84.3% accuracy, 89.8% area under the curve, and 57.6% Matthews correlation coefficient for the external test performance. Furthermore, our model accurately predicted the skin corrosion toxicity of all new and unseen compounds beyond our test set, highlighting prominent classification performance compared to existing skin corrosion models. This finding will contribute to the utilization of DL and conjoint characteristics of molecular structure to enhance the model's predictive capability for skin toxicity assessment.

摘要

皮肤腐蚀性评估是一个重要的毒性终点,涉及局部剂型和化妆品的安全性问题。以前,皮肤腐蚀性评估需要进行动物试验;然而,皮肤结构的差异以及对动物模型的伦理关注推动了替代方法的发展,如[具体方法1]和[具体方法2]模型。本研究旨在基于循环神经网络(RNN)开发深度学习(DL)模型,用于根据化学语言符号、分子亚结构、物理化学性质以及这三种性质的组合(称为联合指纹)对化合物的皮肤腐蚀性进行分类。使用简单RNN、长短期记忆、双向长短期记忆(BiLSTM)、门控循环单元和双向门控循环单元模型,以及11种分子特征,生成了55个基于RNN的模型。分别利用适用域和排列重要性分析来增强模型的可信赖预测能力和解释能力。我们的研究结果表明,具有MACCS键和物理化学描述符联合特征的BiLSTM是最有效的模型,外部测试性能的准确率为84.3%,曲线下面积为89.8%,马修斯相关系数为57.6%。此外,我们的模型准确预测了测试集之外所有新的和未见过的化合物的皮肤腐蚀性毒性,与现有的皮肤腐蚀模型相比,突出了显著的分类性能。这一发现将有助于利用DL和分子结构的联合特征来提高模型对皮肤毒性评估的预测能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0254/11815816/f766000431f5/ci4c02062_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验