Suppr超能文献

动态光合标记与碳定位质谱法监测体内核酮糖-1,5-二磷酸羧化酶/加氧酶的碳同化率。

Dynamic photosynthetic labeling and carbon-positional mass spectrometry monitor in vivo RUBISCO carbon assimilation rates.

作者信息

Rajarathinam Yogeswari, Wittemeier Luisa, Gutekunst Kirstin, Hagemann Martin, Kopka Joachim

机构信息

Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany.

Environmental and Biochemical Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK.

出版信息

Plant Physiol. 2025 Feb 7;197(2). doi: 10.1093/plphys/kiaf020.

Abstract

RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE/OXYGENASE (RUBISCO) is the most abundant enzyme and CO2 bio-sequestration system on Earth. Its in vivo activity is usually determined by 14CO2 incorporation into 3-phosphoglycerate (3PGA). However, the radiometric analysis of 3PGA does not distinguish carbon positions. Hence, RUBISCO activity that fixes carbon into the 1-C position of 3PGA and Calvin-Benson-Bassham (CBB) cycle activities that redistribute carbon into its 2-C and 3-C positions are not resolved. This study aims to develop technology that differentiates between these activities. In source fragmentation of gas chromatography-mass spectrometry (GC-MS) enables paired isotopologue distribution analyses of fragmented substructures and the complete metabolite structure. GC-MS measurements after dynamic photosynthetic 13CO2 labeling allowed quantification of the 13C fractional enrichment (E13C) and molar carbon assimilation rates (A13C) at carbon position 1-C of 3PGA by combining E13C from carbon positions 2,3-C2 and 1,2,3-C3 with quantification of 3PGA concentrations. We validated the procedure using two GC-time of flight-MS instruments, operated at nominal or high mass resolution, and tested the expected 3PGA positional labeling by in vivo glycolysis of positional labeled glucose isotopomers. Mutant analysis of the highly divergent GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASEs (GAPDH1 and 2) from Synechocystis sp. PCC 6803 revealed full inactivation of the CBB cycle with maintained RUBISCO activity in Δgapdh2 and a CBB cycle modulating role of GAPDH1 under fluctuating CO2 supply. RUBISCO activity in the CBB-deficient Δgapdh2 can re-assimilate CO2 released by catabolic pathways. We suggest that RUBISCO activity in Synechocystis can scavenge carbon lost through the pentose phosphate pathway or other cellular decarboxylation reactions.

摘要

1,5 - 二磷酸核酮糖羧化酶/加氧酶(RUBISCO)是地球上含量最丰富的酶和二氧化碳生物固存系统。其体内活性通常通过14CO2掺入3 - 磷酸甘油酸(3PGA)来测定。然而,对3PGA的放射性分析无法区分碳的位置。因此,将碳固定到3PGA的1 - C位置的RUBISCO活性以及将碳重新分布到其2 - C和3 - C位置的卡尔文 - 本森 - 巴斯姆(CBB)循环活性无法区分。本研究旨在开发区分这些活性的技术。气相色谱 - 质谱联用(GC - MS)的源内碎裂能够对碎裂的子结构和完整代谢物结构进行成对的同位素异构体分布分析。动态光合13CO2标记后的GC - MS测量通过将来自2,3 - C2和1,2,3 - C3碳位置的13C与3PGA浓度的定量相结合,实现了对3PGA的1 - C碳位置的13C分数富集(E13C)和摩尔碳同化率(A13C)的定量。我们使用两台标称或高质量分辨率运行的GC - 飞行时间 - MS仪器验证了该程序,并通过位置标记的葡萄糖同位素异构体的体内糖酵解测试了预期的3PGA位置标记。对来自集胞藻PCC 6803的高度不同的3 - 磷酸甘油醛脱氢酶(GAPDH1和2)进行突变分析表明,在Δgapdh2中CBB循环完全失活但RUBISCO活性得以维持,并且在CO2供应波动的情况下GAPDH1具有调节CBB循环的作用。CBB缺陷型Δgapdh2中的RUBISCO活性可以重新同化分解代谢途径释放的CO2。我们认为集胞藻中的RUBISCO活性可以清除通过磷酸戊糖途径或其他细胞脱羧反应损失的碳。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5222/11809591/e40ee28da520/kiaf020f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验