Suppr超能文献

利用机器学习和哨兵-3影像分析呼伦湖不同藻类物种生物量丰度的时空变化

Spatiotemporal variation in biomass abundance of different algal species in Lake Hulun using machine learning and Sentinel-3 images.

作者信息

Yan Zhaojiang, Fang Chong, Song Kaishan, Wang Xiangyu, Wen Zhidan, Shang Yingxin, Tao Hui, Lyu Yunfeng

机构信息

School of Geographic Science, Changchun Normal University, Changchun, 130102, China.

State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.

出版信息

Sci Rep. 2025 Jan 21;15(1):2739. doi: 10.1038/s41598-025-87338-4.

Abstract

Climate change and human activities affect the biomass of different algal and the succession of dominant species. In the past, phytoplankton phyla inversion has been focused on oceanic and continental shelf waters, while phytoplankton phyla inversion in inland lakes and reservoirs is still in the initial and exploratory stage, and the research results are relatively few. Especially for mid-to-high latitude lakes, the research is even more blank. Therefore, this study proposes a machine learning method based on OLCI/Sentinel-3 satellite imagery to retrieve algal biomass abundance. Remote sensing models were developed to estimate the biomass abundance of three major algal groups: Cyanophyta, Chlorophyta, and Bacillariophyta. This study compared and evaluated 6 commonly used machine learning models, including extreme gradient boosting (XGBoost), support vector regression (SVR), backpropagation neural network (BP), gradient boosting decision tree (GBDT), random forest (RF), and categorical boosting (CatBoost). The results indicated that XGBoost exhibited the highest accuracy (R = 0.92, RMSE = 1.78%, MAPE = 9.96%) in estimating Cyanophyta's biomass abundance. The RF model demonstrated the highest accuracy for estimating Chlorophyta's biomass abundance (R = 0.72, RMSE = 6.57%, MAPE = 50.8%), while the GBDT model exhibited the highest accuracy for estimating Bacillariophyta's biomass abundance (R = 0.9, RMSE = 4.66%, MAPE = 47.87%). The models were subsequently applied to all cloud-free OLCI images from Hulun Lake during the ice-free periods from 2016 to 2023, producing spatiotemporal distribution maps of the different phytoplankton biomass abundance. Cyanophyta dominated the biomass abundance (44.62 ± 3.47%), followed by Bacillariophyta (36.35 ± 2.68%), and Chlorophyta had the lowest proportion (10.42 ± 1.08%). Together, these three algae groups constituted 91.4 ± 1.55% of all phytoplankton in Hulun Lake. Significant annual variations in the biomass abundance of Cyanophyta and Bacillariophyta were observed, whereas those of Chlorophyta remained stable. Additionally, this study examined the effects of climatic factors and water quality parameters on the biomass abundance of algae. The findings suggest that temperature, wind speed, and atmospheric pressure are critical factors influencing the biomass abundance of the different algae groups. This study not only fills the gaps in the related field, but also provides a new method for monitoring algae, as well as a strong support for realizing the goals of sustainable management of water resources and ecological protection.

摘要

气候变化和人类活动影响着不同藻类的生物量以及优势种的演替。过去,浮游植物门类倒置主要集中在海洋和大陆架水域,而内陆湖泊和水库中的浮游植物门类倒置仍处于初始探索阶段,研究成果相对较少。特别是对于中高纬度湖泊,相关研究更是空白。因此,本研究提出一种基于OLCI/Sentinel-3卫星图像的机器学习方法来反演藻类生物量丰度。开发了遥感模型以估算蓝藻门、绿藻门和硅藻门这三大藻类群体的生物量丰度。本研究比较并评估了6种常用的机器学习模型,包括极端梯度提升(XGBoost)、支持向量回归(SVR)、反向传播神经网络(BP)、梯度提升决策树(GBDT)、随机森林(RF)和分类提升(CatBoost)。结果表明,XGBoost在估算蓝藻门生物量丰度方面表现出最高的准确性(R = 0.92,RMSE = 1.78%,MAPE = 9.96%)。RF模型在估算绿藻门生物量丰度方面表现出最高的准确性(R = 0.72,RMSE = 6.57%,MAPE = 50.8%),而GBDT模型在估算硅藻门生物量丰度方面表现出最高的准确性(R = 0.9,RMSE = 4.66%,MAPE = 47.87%)。随后,这些模型被应用于2016年至2023年无冰期呼伦湖所有无云的OLCI图像,生成了不同浮游植物生物量丰度的时空分布图。蓝藻门在生物量丰度中占主导地位(44.62±3.47%),其次是硅藻门(36.35±2.68%),绿藻门所占比例最低(10.42±1.08%)。这三个藻类群体共占呼伦湖所有浮游植物的91.4±1.55%。观察到蓝藻门和硅藻门生物量丰度存在显著的年际变化,而绿藻门的生物量丰度保持稳定。此外,本研究还考察了气候因素和水质参数对藻类生物量丰度的影响。研究结果表明,温度、风速和大气压力是影响不同藻类群体生物量丰度的关键因素。本研究不仅填补了相关领域的空白,还为藻类监测提供了一种新方法,为实现水资源可持续管理和生态保护目标提供了有力支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7605/11751342/5379a6dab0bf/41598_2025_87338_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验