Suppr超能文献

基于人工智能机器学习的韩国老年人糖尿病预测:横断面分析

AI Machine Learning-Based Diabetes Prediction in Older Adults in South Korea: Cross-Sectional Analysis.

作者信息

Lee Hocheol, Park Myung-Bae, Won Young-Joo

机构信息

1, Department of Health Administration, College of Software and Digital Healthcare Convergence, Yonsei University, Changjogwan, Yonseidae-gil 1, Wonju, 26493, Republic of Korea, +82 (0) 33-760-2257.

出版信息

JMIR Form Res. 2025 Jan 21;9:e57874. doi: 10.2196/57874.

Abstract

BACKGROUND

Diabetes is prevalent in older adults, and machine learning algorithms could help predict diabetes in this population.

OBJECTIVE

This study determined diabetes risk factors among older adults aged ≥60 years using machine learning algorithms and selected an optimized prediction model.

METHODS

This cross-sectional study was conducted on 3084 older adults aged ≥60 years in Seoul from January to November 2023. Data were collected using a mobile app (Gosufit) that measured depression, stress, anxiety, basal metabolic rate, oxygen saturation, heart rate, and average daily step count. Health coordinators recorded data on diabetes, hypertension, hyperlipidemia, chronic obstructive pulmonary disease, percent body fat, and percent muscle. The presence of diabetes was the target variable, with various health indicators as predictors. Machine learning algorithms, including random forest, gradient boosting model, light gradient boosting model, extreme gradient boosting model, and k-nearest neighbors, were employed for analysis. The dataset was split into 70% training and 30% testing sets. Model performance was evaluated using accuracy, precision, recall, F1 score, and area under the curve (AUC). Shapley additive explanations (SHAPs) were used for model interpretability.

RESULTS

Significant predictors of diabetes included hypertension (χ²1=197.294; P<.001), hyperlipidemia (χ²1=47.671; P<.001), age (mean: diabetes group 72.66 years vs nondiabetes group 71.81 years), stress (mean: diabetes group 42.68 vs nondiabetes group 41.47; t3082=-2.858; P=.004), and heart rate (mean: diabetes group 75.05 beats/min vs nondiabetes group 73.14 beats/min; t3082=-7.948; P<.001). The extreme gradient boosting model (XGBM) demonstrated the best performance, with an accuracy of 84.88%, precision of 77.92%, recall of 66.91%, F1 score of 72.00, and AUC of 0.7957. The SHAP analysis of the top-performing XGBM revealed key predictors for diabetes: hypertension, age, percent body fat, heart rate, hyperlipidemia, basal metabolic rate, stress, and oxygen saturation. Hypertension strongly increased diabetes risk, while advanced age and elevated stress levels also showed significant associations. Hyperlipidemia and higher heart rates further heightened diabetes probability. These results highlight the importance and directional impact of specific features in predicting diabetes, providing valuable insights for risk stratification and targeted interventions.

CONCLUSIONS

This study focused on modifiable risk factors, providing crucial data for establishing a system for the automated collection of health information and lifelog data from older adults using digital devices at service facilities.

摘要

背景

糖尿病在老年人中很普遍,机器学习算法有助于预测该人群的糖尿病发病情况。

目的

本研究使用机器学习算法确定60岁及以上老年人的糖尿病风险因素,并选择优化的预测模型。

方法

本横断面研究于2023年1月至11月对首尔3084名60岁及以上老年人进行。数据通过一款移动应用程序(Gosufit)收集,该程序可测量抑郁、压力、焦虑、基础代谢率、血氧饱和度、心率和每日平均步数。健康协调员记录了糖尿病、高血压、高脂血症、慢性阻塞性肺疾病、体脂百分比和肌肉百分比的数据。糖尿病的存在为目标变量,各种健康指标作为预测因素。采用包括随机森林、梯度提升模型、轻梯度提升模型、极端梯度提升模型和k近邻算法在内的机器学习算法进行分析。数据集被分为70%的训练集和30%的测试集。使用准确率、精确率、召回率、F1分数和曲线下面积(AUC)评估模型性能。使用夏普利值附加解释(SHAP)进行模型可解释性分析。

结果

糖尿病的显著预测因素包括高血压(χ²1=197.294;P<0.001)、高脂血症(χ²1=47.671;P<0.001)、年龄(平均值:糖尿病组72.66岁,非糖尿病组71.81岁)、压力(平均值:糖尿病组42.68,非糖尿病组41.47;t3082=-2.858;P=0.004)和心率(平均值:糖尿病组75.05次/分钟,非糖尿病组73.14次/分钟;t3082=-7.948;P<0.001)。极端梯度提升模型(XGBM)表现最佳,准确率为84.88%,精确率为77.92%,召回率为66.91%,F1分数为72.00,AUC为0.7957。对表现最佳的XGBM进行的SHAP分析揭示了糖尿病的关键预测因素:高血压、年龄、体脂百分比、心率、高脂血症、基础代谢率、压力和血氧饱和度。高血压显著增加糖尿病风险,高龄和压力水平升高也显示出显著关联。高脂血症和较高的心率进一步增加糖尿病发病概率。这些结果突出了特定特征在预测糖尿病中的重要性和方向性影响,为风险分层和针对性干预提供了有价值的见解。

结论

本研究聚焦于可改变的风险因素,为建立一个利用服务设施中的数字设备自动收集老年人健康信息和生活日志数据的系统提供了关键数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4899/11779598/f6f146766bfd/formative-v9-e57874-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验