Rhemtulla Mijke, Savalei Victoria
Department of Psychology, University of California, Davis, Davis, CA, USA.
Department of Psychology, University of British Columbia, Vancouver, BC, Canada.
Multivariate Behav Res. 2025 May-Jun;60(3):598-619. doi: 10.1080/00273171.2024.2444943. Epub 2025 Jan 22.
In this tutorial, we clarify the distinction between estimated factor scores, which are weighted composites of observed variables, and true factor scores, which are unobservable values of the underlying latent variable. Using an analogy with linear regression, we show how predicted values in linear regression share the properties of the most common type of factor score estimates, regression factor scores, computed from single-indicator and multiple indicator latent variable models. Using simulated data from 1- and 2-factor models, we also show how the amount of measurement error affects the reliability of regression factor scores, and compare the performance of regression factor scores with that of unweighted sum scores.
在本教程中,我们阐明了估计因子得分(即观测变量的加权合成)与真实因子得分(即潜在潜变量的不可观测值)之间的区别。通过与线性回归进行类比,我们展示了线性回归中的预测值如何与从单指标和多指标潜变量模型计算出的最常见类型的因子得分估计值(回归因子得分)具有相同的属性。使用来自单因素和双因素模型的模拟数据,我们还展示了测量误差的大小如何影响回归因子得分的可靠性,并将回归因子得分的性能与未加权总和得分的性能进行比较。