Suppr超能文献

潜在变量应保持不变:来自蒙特卡罗研究的证据。

Latent variables should remain as such: Evidence from a Monte Carlo study.

机构信息

University of Chile.

出版信息

J Gen Psychol. 2019 Oct-Dec;146(4):417-442. doi: 10.1080/00221309.2019.1596064. Epub 2019 Apr 22.

Abstract

Use of subject scores as manifest variables to assess the relationship between latent variables produces attenuated estimates. This has been demonstrated for raw scores from classical test theory (CTT) and factor scores derived from factor analysis. Conclusions on scores have not been sufficiently extended to item response theory (IRT) theta estimates, which are still recommended for estimation of relationships between latent variables. This is because IRT estimates appear to have preferable properties compared to CTT, while structural equation modeling (SEM) is often advised as an alternative to scores for estimation of the relationship between latent variables. The present research evaluates the consequences of using subject scores as manifest variables in regression models to test the relationship between latent variables. Raw scores and three methods for obtaining theta estimates were used and compared to latent variable SEM modeling. A Monte Carlo study was designed by manipulating sample size, number of items, type of test, and magnitude of the correlation between latent variables. Results show that, despite the advantage of IRT models in other areas, estimates of the relationship between latent variables are always more accurate when SEM models are used. Recommendations are offered for applied researchers.

摘要

使用科目分数作为显变量来评估潜在变量之间的关系会产生衰减估计。这已经在经典测试理论(CTT)的原始分数和因子分析得出的因子分数中得到了证明。关于分数的结论尚未充分扩展到项目反应理论(IRT)的θ估计值,目前仍建议使用IRT 估计值来估计潜在变量之间的关系。这是因为与 CTT 相比,IRT 估计值似乎具有更好的特性,而结构方程模型(SEM)通常被建议作为替代分数来估计潜在变量之间的关系。本研究评估了在回归模型中使用科目分数作为显变量来检验潜在变量之间关系的后果。使用了原始分数和三种获得θ估计值的方法,并与潜在变量 SEM 建模进行了比较。通过操纵样本量、项目数量、测试类型和潜在变量之间的相关程度来设计蒙特卡罗研究。结果表明,尽管 IRT 模型在其他领域具有优势,但在使用 SEM 模型时,潜在变量之间关系的估计总是更准确。为应用研究人员提供了建议。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验