Suppr超能文献

使用几何感知图神经网络预测配位金属离子-配体结合位点的位置。

Predicting the location of coordinated metal ion-ligand binding sites using geometry-aware graph neural networks.

作者信息

Essien Clement, Wang Ning, Yu Yang, Alqarghuli Salhuldin, Qin Yongfang, Manshour Negin, He Fei, Xu Dong

机构信息

Department of Electrical Engineering and Computer Science, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.

School of Information Science and Technology, Northeast Normal University, Changchun, Jilin, China.

出版信息

Comput Struct Biotechnol J. 2024 Dec 21;27:137-148. doi: 10.1016/j.csbj.2024.12.016. eCollection 2025.

Abstract

More than 50 % of proteins bind to metal ions. Interactions between metal ions and proteins, especially coordinated interactions, are essential for biological functions, such as maintaining protein structure and signal transport. Physiological metal-ion binding prediction is pivotal for both elucidating the biological functions of proteins and for the design of new drugs. However, accurately predicting these interactions remains challenging. In this study, we proposed GPred, a novel structure-based method that transforms the 3-dimensional structure of a protein into a point cloud representation and then designs a geometry-aware graph neural network to learn the local structural properties of each amino acid residue under specific ligand-binding supervision. We trained our model to predict the location of coordinated binding sites for five essential metal ions: Zn, Ca, Mg, Mn, and Fe. We further demonstrated the versatility of GPred by applying transfer learning to predict the binding sites of 2 heavy metal ions, that is, cadmium (Cd) and mercury (Hg). We achieved greater than 19.62 %, 14.32 %, 36.62 %, and 40.69 % improvement in the area under the precision-recall curve (AUPR) of Zn, Ca, Mg, Mn, and Fe, respectively, when compared with 6 current accessible state-of-the-art sequence-based or structure-based tools. We also validated the proposed approach on protein structures predicted by AlphaFold2, and its performance was similar to experimental protein structures. In both cases, achieving a low false discovery rate for proteins without annotated ion-binding sites was demonstrated. © 2017 Elsevier Inc. All rights reserved.

摘要

超过50%的蛋白质会与金属离子结合。金属离子与蛋白质之间的相互作用,尤其是配位相互作用,对于生物功能至关重要,比如维持蛋白质结构和信号传输。生理金属离子结合预测对于阐明蛋白质的生物学功能和新药设计都至关重要。然而,准确预测这些相互作用仍然具有挑战性。在本研究中,我们提出了GPred,这是一种基于结构的新方法,它将蛋白质的三维结构转换为点云表示,然后设计一种几何感知图神经网络,在特定配体结合监督下学习每个氨基酸残基的局部结构特性。我们训练模型来预测五种必需金属离子(锌、钙、镁、锰和铁)的配位结合位点位置。我们通过应用迁移学习来预测两种重金属离子(即镉和汞)的结合位点,进一步证明了GPred的通用性。与6种当前可用的基于序列或基于结构的先进工具相比,我们在锌、钙、镁、锰和铁的精确召回率曲线下面积(AUPR)方面分别取得了超过19.62%、14.32%、36.62%和40.69%的提升。我们还在AlphaFold2预测的蛋白质结构上验证了所提出的方法,其性能与实验蛋白质结构相似。在这两种情况下,都证明了对于没有注释离子结合位点的蛋白质具有较低的错误发现率。© 2017爱思唯尔公司。保留所有权利。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6cb/11750443/e85cbac57324/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验