Academy of Military Medical Sciences, Beijing 100850, China.
Defense Innovation Institute, Beijing 100071, China.
Int J Mol Sci. 2024 Aug 27;25(17):9280. doi: 10.3390/ijms25179280.
Predicting protein-ligand binding sites is an integral part of structural biology and drug design. A comprehensive understanding of these binding sites is essential for advancing drug innovation, elucidating mechanisms of biological function, and exploring the nature of disease. However, accurately identifying protein-ligand binding sites remains a challenging task. To address this, we propose PGpocket, a geometric deep learning-based framework to improve protein-ligand binding site prediction. Initially, the protein surface is converted into a point cloud, and then the geometric and chemical properties of each point are calculated. Subsequently, the point cloud graph is constructed based on the inter-point distances, and the point cloud graph neural network (GNN) is applied to extract and analyze the protein surface information to predict potential binding sites. PGpocket is trained on the scPDB dataset, and its performance is verified on two independent test sets, Coach420 and HOLO4K. The results show that PGpocket achieves a 58% success rate on the Coach420 dataset and a 56% success rate on the HOLO4K dataset. These results surpass competing algorithms, demonstrating PGpocket's advancement and practicality for protein-ligand binding site prediction.
预测蛋白质-配体结合位点是结构生物学和药物设计的一个组成部分。全面了解这些结合位点对于推进药物创新、阐明生物功能机制以及探索疾病本质至关重要。然而,准确识别蛋白质-配体结合位点仍然是一项具有挑战性的任务。为了解决这个问题,我们提出了 PGpocket,这是一个基于几何深度学习的框架,用于改进蛋白质-配体结合位点预测。首先,将蛋白质表面转换为点云,然后计算每个点的几何和化学性质。随后,根据点间距离构建点云图,并应用点云图神经网络(GNN)来提取和分析蛋白质表面信息,以预测潜在的结合位点。PGpocket 在 scPDB 数据集上进行训练,并在两个独立的测试集 Coach420 和 HOLO4K 上验证其性能。结果表明,PGpocket 在 Coach420 数据集上的成功率为 58%,在 HOLO4K 数据集上的成功率为 56%。这些结果优于竞争算法,证明了 PGpocket 在蛋白质-配体结合位点预测方面的先进性和实用性。