Baysal Hasan Emre, Yu Tzu-Yi, Naenen Viktor, De Smedt Stijn, Hiz Defne, Zhang Bokai, Xia Heyi, Florenciano Isidro, Rosenthal Martin, Cardinaels Ruth, Molina-Lopez Francisco
Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven, 3001, Belgium.
Department of Chemical Engineering, Soft Matter, Rheology and Technology (SMaRT), KU Leuven, Celestijnenlaan 200J, Leuven, 3001, Belgium.
Adv Sci (Weinh). 2025 Mar;12(11):e2412491. doi: 10.1002/advs.202412491. Epub 2025 Jan 22.
The next generation of soft electronics will expand to the third dimension. This will require the integration of mechanically compliant 3D functional structures with stretchable materials. Here, omnidirectional direct ink writing (DIW) of poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) aerogels with tunable electrical and mechanical performance is demonstrated, which can be integrated with soft substrates. Several PEDOT:PSS hydrogels are formulated for DIW and freeze-dried directly on stretchable substrates to form integrated aerogels displaying high shape fidelity and minimal shrinkage. This technology demonstrates 3D-structured stretchable interconnects, planar thermoelectric generators for skin electronics, and vertically printed high aspect ratio thermoelectric pillars with ultralow thermal conductivity of 0.065 W m K. The aerogel pillars outpower their dense counterparts in realistic energy harvesting scenarios, where contact resistances cannot be ignored and produced up to 26 nW cm (corresponding to a gravimetric power density of 0.76 mW kg) for a difference of temperature of 15 K. Here, promising advancements in soft and energy-efficiency electronic systems relevant to soft robotics and wearables are suggested.
下一代柔性电子器件将向三维方向扩展。这将需要将机械柔顺的三维功能结构与可拉伸材料集成在一起。在此,展示了具有可调电学和力学性能的聚(3,4-乙撑二氧噻吩):聚苯乙烯磺酸盐(PEDOT:PSS)气凝胶的全向直接墨水书写(DIW),其可与柔性基板集成。制备了几种用于DIW的PEDOT:PSS水凝胶,并直接在可拉伸基板上冷冻干燥,以形成具有高形状保真度和最小收缩率的集成气凝胶。该技术展示了三维结构的可拉伸互连、用于皮肤电子器件的平面热电发电机以及垂直打印的高纵横比热电柱,其超低热导率为0.065 W m K。在实际能量收集场景中,气凝胶柱的功率超过其致密对应物,在这种场景中接触电阻不可忽略,对于15 K的温差,可产生高达26 nW cm(对应于0.76 mW kg的重量功率密度)。在此,提出了与软机器人和可穿戴设备相关的柔性和高能效电子系统方面的有前景的进展。