氯霉素和庆大霉素通过抑制一部分大肠杆菌脂多糖突变体来减少对噬菌体ΦX174的抗性演变。
Chloramphenicol and gentamicin reduce the evolution of resistance to phage ΦX174 by suppressing a subset of E. coli LPS mutants.
作者信息
Parab Lavisha, Romeyer Dherbey Jordan, Rivera Norma, Schwarz Michael, Gallie Jenna, Bertels Frederic
机构信息
Microbial Molecular Evolution Group, Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany.
Microbial Evolutionary Dynamics Group, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany.
出版信息
PLoS Biol. 2025 Jan 21;23(1):e3002952. doi: 10.1371/journal.pbio.3002952. eCollection 2025 Jan.
Bacteriophages infect gram-negative bacteria by attaching to molecules present on the bacterial surface, often lipopolysaccharides (LPS). Modification of LPS can lead to resistance to phage infection. In addition, LPS modifications can impact antibiotic susceptibility, allowing for phage-antibiotic synergism. The evolutionary mechanism(s) behind such synergistic interactions remain largely unclear. Here, we show that the presence of antibiotics can affect the evolution of resistance to phage infection, using phage ΦX174 and Escherichia coli C. We use a collection of 34 E. coli C LPS strains, each of which is resistant to ΦX174, and has either a "rough" or "deep rough" LPS phenotype. Growth of the bacterial strains with the deep rough phenotype is inhibited at low concentrations of chloramphenicol and, to a much lesser degree, gentamicin. Treating E. coli C wild type with ΦX174 and chloramphenicol eliminates the emergence of mutants with the deep rough phenotype, and thereby slows the evolution of resistance to phage infection. At slightly lower chloramphenicol concentrations, phage resistance rates are similar to those observed at high concentrations; yet, we show that the diversity of possible mutants is much larger than at higher chloramphenicol concentrations. These data suggest that specific antibiotic concentrations can lead to synergistic phage-antibiotic interactions that disappear at higher antibiotic concentrations. Overall, we show that the change in survival of various ΦX174-resistant E. coli C mutants in the presence of antibiotics can explain the observed phage-antibiotic synergism.
噬菌体通过附着在细菌表面存在的分子(通常是脂多糖,即LPS)上感染革兰氏阴性菌。LPS的修饰可导致对噬菌体感染产生抗性。此外,LPS修饰会影响抗生素敏感性,从而产生噬菌体 - 抗生素协同作用。这种协同相互作用背后的进化机制在很大程度上仍不清楚。在此,我们使用噬菌体ΦX174和大肠杆菌C,证明了抗生素的存在会影响对噬菌体感染抗性的进化。我们使用了一组34种大肠杆菌C LPS菌株,每种菌株都对ΦX174具有抗性,并且具有“粗糙”或“深粗糙”LPS表型。具有深粗糙表型的细菌菌株在低浓度氯霉素以及程度小得多的庆大霉素作用下生长受到抑制。用ΦX174和氯霉素处理大肠杆菌C野生型可消除具有深粗糙表型的突变体的出现,从而减缓对噬菌体感染抗性的进化。在略低的氯霉素浓度下,噬菌体抗性率与在高浓度下观察到的相似;然而,我们表明可能的突变体的多样性比在较高氯霉素浓度下大得多。这些数据表明特定的抗生素浓度可导致噬菌体 - 抗生素协同相互作用,而在较高抗生素浓度下这种相互作用会消失。总体而言,我们表明在存在抗生素的情况下,各种抗ΦX174大肠杆菌C突变体的存活率变化可以解释观察到的噬菌体 - 抗生素协同作用。
相似文献
Appl Environ Microbiol. 2010-9-10
Proc Natl Acad Sci U S A. 2020-5-18
引用本文的文献
Antibiotics (Basel). 2025-5-27
本文引用的文献
Virus Evol. 2024-1-13
Microbiol Spectr. 2024-2-6
Science. 2023-7-14
FEMS Microbiol Rev. 2022-1-18