Liang Qiuhua, Lara-Avila Samuel, Kubatkin Sergey, Hoque Md Anamul, Dash Saroj Prasad, Wiktor Julia
Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
Nano Lett. 2025 Feb 5;25(5):2052-2058. doi: 10.1021/acs.nanolett.4c06076. Epub 2025 Jan 22.
Two-dimensional (2D) transition metal dichalcogenides (TMDs) have received significant interest for use in tunnel field-effect transistors (TFETs) due to their ultrathin layers and tunable band gap features. In this study, we used density functional theory (DFT) to investigate the electronic properties of six TMD heterostructures, namely, MoSe/HfS, MoTe/ZrS, MoTe/HfS, WSe/HfS, WTe/ZrS, and WTe/HfS, focusing on variations in band alignments. We demonstrate that WTe/ZrS and WTe/HfS have the smallest band gaps (close to 0 or broken) from the considered set. Furthermore, combining DFT with the nonequilibrium Green's function method (DFT-NEGF), we analyzed the output - characteristics, revealing increased current as band gap closes across all studied heterostructures. Notably, WTe/ZrS and WTe/HfS show a potential negative differential resistance (NDR) even without a broken gap. Importantly, the inclusion of a p-doped gate effect in WTe/ZrS enhances the current flow and band-to-band tunneling. The rapidly increasing tunneling current under low applied voltage indicates that the WTe/ZrS and WTe/HfS heterostructures are promising for applications in TFETs.
二维(2D)过渡金属二硫属化物(TMD)因其超薄层和可调节带隙特性,在隧道场效应晶体管(TFET)中的应用受到了广泛关注。在本研究中,我们使用密度泛函理论(DFT)研究了六种TMD异质结构的电子特性,即MoSe/HfS、MoTe/ZrS、MoTe/HfS、WSe/HfS、WTe/ZrS和WTe/HfS,重点关注能带排列的变化。我们证明,在所考虑的结构中,WTe/ZrS和WTe/HfS的带隙最小(接近0或带隙破裂)。此外,结合DFT和非平衡格林函数方法(DFT-NEGF),我们分析了输出特性,发现在所有研究的异质结构中,随着带隙关闭,电流增加。值得注意的是,即使没有带隙破裂,WTe/ZrS和WTe/HfS也显示出潜在的负微分电阻(NDR)。重要的是,在WTe/ZrS中引入p型掺杂栅极效应可增强电流流动和带间隧穿。在低施加电压下迅速增加的隧穿电流表明,WTe/ZrS和WTe/HfS异质结构在TFET应用中具有广阔前景。