Suppr超能文献

用于轻链型心脏淀粉样变性患者诊断和预后评估的细胞外容积分数自动测量

Automated extracellular volume fraction measurement for diagnosis and prognostication in patients with light-chain cardiac amyloidosis.

作者信息

Hwang In-Chang, Chun Eun Ju, Kim Pan Ki, Kim Myeongju, Park Jiesuck, Choi Hong-Mi, Yoon Yeonyee E, Cho Goo-Yeong, Choi Byoung Wook

机构信息

Cardiovascular Center, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, South Korea.

Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea.

出版信息

PLoS One. 2025 Jan 22;20(1):e0317741. doi: 10.1371/journal.pone.0317741. eCollection 2025.

Abstract

AIMS

T1 mapping on cardiac magnetic resonance (CMR) imaging is useful for diagnosis and prognostication in patients with light-chain cardiac amyloidosis (AL-CA). We conducted this study to evaluate the performance of T1 mapping parameters, derived from artificial intelligence (AI)-automated segmentation, for detection of cardiac amyloidosis (CA) in patients with left ventricular hypertrophy (LVH) and their prognostic values in patients with AL-CA.

METHODS AND RESULTS

A total of 300 consecutive patients who underwent CMR for differential diagnosis of LVH were analyzed. CA was confirmed in 50 patients (39 with AL-CA and 11 with transthyretin amyloidosis), hypertrophic cardiomyopathy in 198, hypertensive heart disease in 47, and Fabry disease in 5. A semi-automated deep learning algorithm (Myomics-Q) was used for the analysis of the CMR images. The optimal cutoff extracellular volume fraction (ECV) for the differentiation of CA from other etiologies was 33.6% (diagnostic accuracy 85.6%). The automated ECV measurement showed a significant prognostic value for a composite of cardiovascular death and heart failure hospitalization in patients with AL-CA (revised Mayo stage III or IV) (adjusted hazard ratio 4.247 for ECV ≥40%, 95% confidence interval 1.215-14.851, p-value = 0.024). Incorporation of automated ECV measurement into the revised Mayo staging system resulted in better risk stratification (integrated discrimination index 27.9%, p = 0.013; categorical net reclassification index 13.8%, p = 0.007).

CONCLUSIONS

T1 mapping on CMR imaging, derived from AI-automated segmentation, not only allows for improved diagnosis of CA from other etiologies of LVH, but also provides significant prognostic value in patients with AL-CA.

摘要

目的

心脏磁共振成像(CMR)的T1映射对于轻链型心脏淀粉样变性(AL-CA)患者的诊断和预后评估很有用。我们开展这项研究以评估从人工智能(AI)自动分割得出的T1映射参数对左心室肥厚(LVH)患者心脏淀粉样变性(CA)的检测性能及其在AL-CA患者中的预后价值。

方法和结果

共分析了300例因LVH鉴别诊断而接受CMR检查的连续患者。50例确诊为CA(39例为AL-CA,11例为转甲状腺素蛋白淀粉样变性),198例为肥厚型心肌病,47例为高血压性心脏病,5例为法布里病。使用一种半自动深度学习算法(Myomics-Q)分析CMR图像。CA与其他病因鉴别诊断的最佳细胞外容积分数(ECV)临界值为33.6%(诊断准确率85.6%)。自动ECV测量对AL-CA患者(修订的梅奥分期III或IV期)的心血管死亡和心力衰竭住院复合终点具有显著的预后价值(ECV≥40%时调整后的风险比为4.247,95%置信区间为1.215 - 14.851,p值 = 0.024)。将自动ECV测量纳入修订的梅奥分期系统可实现更好的风险分层(综合判别指数为27.9%,p = 0.013;分类净重新分类指数为13.8%,p = 0.007)。

结论

源自AI自动分割的CMR成像T1映射不仅有助于改善CA与其他LVH病因的诊断,还为AL-CA患者提供了显著的预后价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8383/11753688/7e8a183c222b/pone.0317741.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验