Suppr超能文献

使用混合 CNN-LSTM 模型对左心室肥厚的常见病因进行鉴别诊断。

Differential diagnosis of common etiologies of left ventricular hypertrophy using a hybrid CNN-LSTM model.

机构信息

Cardiovascular Center, Seoul National University Bundang Hospital, 82 Gumi-Ro-173-Gil, Bundang, Seongnam, Gyeonggi, 13620, South Korea.

Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea.

出版信息

Sci Rep. 2022 Dec 5;12(1):20998. doi: 10.1038/s41598-022-25467-w.

Abstract

Differential diagnosis of left ventricular hypertrophy (LVH) is often obscure on echocardiography and requires numerous additional tests. We aimed to develop a deep learning algorithm to aid in the differentiation of common etiologies of LVH (i.e. hypertensive heart disease [HHD], hypertrophic cardiomyopathy [HCM], and light-chain cardiac amyloidosis [ALCA]) on echocardiographic images. Echocardiograms in 5 standard views (parasternal long-axis, parasternal short-axis, apical 4-chamber, apical 2-chamber, and apical 3-chamber) were obtained from 930 subjects: 112 with HHD, 191 with HCM, 81 with ALCA and 546 normal subjects. The study population was divided into training (n = 620), validation (n = 155), and test sets (n = 155). A convolutional neural network-long short-term memory (CNN-LSTM) algorithm was constructed to independently classify the 3 diagnoses on each view, and the final diagnosis was made by an aggregate network based on the simultaneously predicted probabilities of HCM, HCM, and ALCA. Diagnostic performance of the algorithm was evaluated by the area under the receiver operating characteristic curve (AUC), and accuracy was evaluated by the confusion matrix. The deep learning algorithm was trained and verified using the training and validation sets, respectively. In the test set, the average AUC across the five standard views was 0.962, 0.982 and 0.996 for HHD, HCM and CA, respectively. The overall diagnostic accuracy was significantly higher for the deep learning algorithm (92.3%) than for echocardiography specialists (80.0% and 80.6%). In the present study, we developed a deep learning algorithm for the differential diagnosis of 3 common LVH etiologies (HHD, HCM and ALCA) by applying a hybrid CNN-LSTM model and aggregate network to standard echocardiographic images. The high diagnostic performance of our deep learning algorithm suggests that the use of deep learning can improve the diagnostic process in patients with LVH.

摘要

左心室肥厚(LVH)的鉴别诊断在超声心动图上常常难以明确,需要进行许多额外的检查。我们旨在开发一种深度学习算法,以帮助在超声心动图像上区分 LVH 的常见病因(即高血压性心脏病[HHD]、肥厚型心肌病[HCM]和轻链心脏淀粉样变性[ALCA])。从 930 名患者中获取了 5 个标准切面(胸骨旁长轴、胸骨旁短轴、心尖 4 腔、心尖 2 腔和心尖 3 腔)的超声心动图:112 例 HHD、191 例 HCM、81 例 ALCA 和 546 例正常对照。研究人群分为训练组(n=620)、验证组(n=155)和测试组(n=155)。构建了卷积神经网络-长短期记忆(CNN-LSTM)算法,以独立对每个切面的 3 种诊断进行分类,然后根据同时预测的 HCM、HCM 和 ALCA 的概率,通过一个综合网络得出最终诊断。使用接收者操作特征曲线下的面积(AUC)评估算法的诊断性能,并通过混淆矩阵评估准确性。深度学习算法分别使用训练集和验证集进行训练和验证。在测试集中,5 个标准切面的平均 AUC 分别为 HHD、HCM 和 CA 的 0.962、0.982 和 0.996。深度学习算法的整体诊断准确性明显高于超声心动图专家(80.0%和 80.6%)。本研究通过应用混合 CNN-LSTM 模型和综合网络对标准超声心动图图像进行分析,开发了一种用于区分 3 种常见 LVH 病因(HHD、HCM 和 ALCA)的深度学习算法。我们的深度学习算法具有较高的诊断性能,表明深度学习的应用可以改善 LVH 患者的诊断过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bca6/9722705/6344135f5bf4/41598_2022_25467_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验