Suppr超能文献

手性纳米纤维对神经干细胞的代谢重编程用于脊髓损伤

Metabolic Reprogramming of Neural Stem Cells by Chiral Nanofiber for Spinal Cord Injury.

作者信息

Wu Haining, Xing Chao, Yu Beibei, Guo Lingli, Dou Xiaoqiu, Gao Laiben, Yang Shijie, Zhang Yongfeng, Gao Xue, Li Shengyou, Xia Bing, Ma Teng, Hao Yiming, Yang Yujie, Gao Xueli, Wei Yitao, Xue Borui, Zhang Qing, Feng Chuan-Liang, Huang Jinghui

机构信息

Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.

Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China.

出版信息

ACS Nano. 2025 Feb 4;19(4):4785-4801. doi: 10.1021/acsnano.4c15770. Epub 2025 Jan 22.

Abstract

Exogenous neural stem cells (NSCs) have great potential to reconstitute damage spinal neural circuitry. However, regulating the metabolic reprogramming of NSCs for reliable nerve regeneration has been challenging. This report discusses the biomimetic dextral hydrogel (DH) with right-handed nanofibers that specifically reprograms the lipid metabolism of NSCs, promoting their neural differentiation and rapid regeneration of damaged axons. The underlying mechanism is the intrinsic stereoselectivity between DH and fatty acid-binding protein 5 (FABP5), which facilitates the transportation of fatty acids bound to FABP5 into the mitochondria and endoplasmic reticulum, subsequently augmenting fatty acid oxidation (FAO) levels and enriching sphingosine biosynthesis. In the rat SCI model, DH significantly improved the Basso-Beattie-Bresnahan (BBB) locomotor scores (over 3-fold) and the hindlimbs' compound muscle action potential (over 4-fold) compared with the untreated group, conveying a significant return of functional recovery. This finding of nanoscale chirality-dependent NSCs metabolic reprogramming provides insights into understanding stem cell physiology and presents opportunities for regenerative medicine.

摘要

外源性神经干细胞(NSCs)在重建受损脊髓神经回路方面具有巨大潜力。然而,调节神经干细胞的代谢重编程以实现可靠的神经再生一直具有挑战性。本报告讨论了具有右手纳米纤维的仿生右旋水凝胶(DH),它能特异性地重新编程神经干细胞的脂质代谢,促进其神经分化和受损轴突的快速再生。其潜在机制是DH与脂肪酸结合蛋白5(FABP5)之间的内在立体选择性,这有助于将与FABP5结合的脂肪酸转运到线粒体和内质网中,随后提高脂肪酸氧化(FAO)水平并丰富鞘氨醇生物合成。在大鼠脊髓损伤模型中,与未治疗组相比,DH显著提高了Basso-Beattie-Bresnahan(BBB)运动评分(超过3倍)和后肢复合肌肉动作电位(超过4倍),表明功能恢复有显著改善。这一关于纳米级手性依赖性神经干细胞代谢重编程的发现为理解干细胞生理学提供了见解,并为再生医学带来了机遇。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0feb/11803919/b33fbbd0ab4e/nn4c15770_0008.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验