Tang Yifeng, Li Gen, Zhang Tieshan, Ren Hao, Yang Xiong, Yang Liu, Guo Dong, Shen Yajing
The Robot and Automation Center and the Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China.
Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong, 999077, China.
Sci Adv. 2025 Jan 24;11(4):eadt2641. doi: 10.1126/sciadv.adt2641. Epub 2025 Jan 22.
Tactile interfaces are essential for enhancing human-machine interactions, yet achieving large-scale, precise distributed force sensing remains challenging due to signal coupling and inefficient data processing. Inspired by the spiral structure of and the processing principles of neuronal systems, this study presents a digital channel-enabled distributed force decoding strategy, resulting in a phygital tactile sensing system named PhyTac. This innovative system effectively prevents marker overlap and accurately identifies multipoint stimuli up to 368 regions from coupled signals. By integrating physics into model training, we reduce the dataset size to just 45 kilobytes, surpassing conventional methods that typically exceed 1 gigabyte. Results demonstrate PhyTac's impressive fidelity of 97.7% across a sensing range of 0.5 to 25 newtons, enabling diverse applications in medical evaluation, sports training, virtual reality, and robotics. This research not only enhances our understanding of hand-centric actions but also highlights the convergence of physical and digital realms, paving the way for advancements in AI-based sensor technologies.
触觉接口对于增强人机交互至关重要,但由于信号耦合和数据处理效率低下,实现大规模、精确的分布式力传感仍然具有挑战性。受[未提及具体事物]的螺旋结构和神经系统处理原理的启发,本研究提出了一种基于数字通道的分布式力解码策略,从而产生了一个名为PhyTac的物理数字触觉传感系统。这个创新系统有效防止了标记重叠,并能从耦合信号中准确识别多达368个区域的多点刺激。通过将物理因素纳入模型训练,我们将数据集大小缩减至仅45千字节,超过了通常超过1千兆字节的传统方法。结果表明,PhyTac在0.5至25牛顿的传感范围内具有97.7%的令人印象深刻的保真度,可在医学评估、运动训练、虚拟现实和机器人技术等多种应用中使用。这项研究不仅增进了我们对以手部为中心的动作的理解,还突出了物理和数字领域的融合,为基于人工智能的传感器技术的进步铺平了道路。