Suppr超能文献

人工智能增强的超声心动图对主动脉瓣狭窄连续体的综合评估

Artificial intelligence-enhanced comprehensive assessment of the aortic valve stenosis continuum in echocardiography.

作者信息

Park Jiesuck, Kim Jiyeon, Jeon Jaeik, Yoon Yeonyee E, Jang Yeonggul, Jeong Hyunseok, Hong Youngtaek, Lee Seung-Ah, Choi Hong-Mi, Hwang In-Chang, Cho Goo-Yeong, Chang Hyuk-Jae

机构信息

Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Republic of Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.

CONNECT-AI Research Center, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea.

出版信息

EBioMedicine. 2025 Feb;112:105560. doi: 10.1016/j.ebiom.2025.105560. Epub 2025 Jan 21.

Abstract

BACKGROUND

Transthoracic echocardiography (TTE) is the primary modality for diagnosing aortic stenosis (AS), yet it requires skilled operators and can be resource-intensive. We developed and validated an artificial intelligence (AI)-based system for evaluating AS that is effective in both resource-limited and advanced settings.

METHODS

We created a dual-pathway AI system for AS evaluation using a nationwide echocardiographic dataset (developmental dataset, n = 8427): 1) a deep learning (DL)-based AS continuum assessment algorithm using limited 2D TTE videos, and 2) automating conventional AS evaluation. We performed internal (internal test dataset [ITDS], n = 841) and external validation (distinct hospital dataset [DHDS], n = 1696; temporally distinct dataset [TDDS], n = 772) for diagnostic value across various stages of AS and prognostic value for composite endpoints (cardiovascular death, heart failure, and aortic valve replacement).

FINDINGS

The DL index for the AS continuum (DLi-ASc, range 0-100) increased with worsening AS severity and demonstrated excellent discrimination for any AS (AUC 0.91-0.99), significant AS (0.95-0.98), and severe AS (0.97-0.99). DLi-ASc was independent predictor for composite endpoint (adjusted hazard ratios 2.19, 1.64, and 1.61 per 10-point increase in ITDS, DHDS, and TDDS, respectively). Automatic measurement of conventional AS parameters demonstrated excellent correlation with manual measurement, resulting in high accuracy for AS staging (98.2% for ITDS, 82.1% for DHDS, and 96.8% for TDDS) and comparable prognostic value to manually-derived parameters.

INTERPRETATION

The AI-based system provides accurate and prognostically valuable AS assessment, suitable for various clinical settings. Further validation studies are planned to confirm its effectiveness across diverse environments.

FUNDING

This work was supported by a grant from the Institute of Information & Communications Technology Planning & Evaluation (IITP) funded by the Korea government (Ministry of Science and ICT; MSIT, Republic of Korea) (No. 2022000972, Development of a Flexible Mobile Healthcare Software Platform Using 5G MEC); and the Medical AI Clinic Program through the National IT Industry Promotion Agency (NIPA) funded by the MSIT, Republic of Korea (Grant No.: H0904-24-1002).

摘要

背景

经胸超声心动图(TTE)是诊断主动脉瓣狭窄(AS)的主要方法,但它需要技术熟练的操作人员,且可能资源消耗大。我们开发并验证了一种基于人工智能(AI)的AS评估系统,该系统在资源有限和先进的环境中均有效。

方法

我们使用全国性超声心动图数据集(开发数据集,n = 8427)创建了用于AS评估的双路径AI系统:1)基于深度学习(DL)的AS连续体评估算法,使用有限的二维TTE视频;2)自动化传统的AS评估。我们进行了内部(内部测试数据集[ITDS],n = 841)和外部验证(不同医院数据集[DHDS],n = 1696;时间上不同的数据集[TDDS],n = 772),以评估AS各个阶段的诊断价值以及复合终点(心血管死亡、心力衰竭和主动脉瓣置换)的预后价值。

结果

AS连续体的DL指数(DLi - ASc,范围0 - 100)随着AS严重程度的加重而增加,对任何AS(AUC 0.91 - 0.99)、重度AS(0.95 - 0.98)和严重AS(0.97 - 0.99)均显示出出色的区分能力。DLi - ASc是复合终点的独立预测因子(在ITDS、DHDS和TDDS中,每增加10分,调整后的风险比分别为2.19、1.64和1.61)。传统AS参数的自动测量与手动测量显示出极好的相关性,AS分期的准确性高(ITDS为98.2%,DHDS为82.1%,TDDS为96.8%),且预后价值与手动得出的参数相当。

解读

基于AI的系统提供了准确且具有预后价值的AS评估,适用于各种临床环境。计划进行进一步的验证研究以确认其在不同环境中的有效性。

资助

这项工作得到了韩国政府(科学和信息通信技术部;MSIT)资助的信息与通信技术规划与评估研究所(IITP)的一项赠款(编号2022000972,使用5G MEC开发灵活的移动医疗软件平台);以及由MSIT资助的通过韩国国家信息技术产业促进机构(NIPA)的医疗AI诊所项目(赠款编号:H0904 - 24 - 1002)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5fa/11794175/0c2ef61f68d2/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验