用于金属离子分离的共价有机框架:纳米结构、机制、应用及未来展望。
Covalent organic frameworks for metal ion separation: Nanoarchitectonics, mechanisms, applications, and future perspectives.
作者信息
Duan Li, Fan Jinlong, Li Zhiming, Qiu Pengju, Jia Yi, Li Junbai
机构信息
National Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi'an 710024, China.
National Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi'an 710024, China.
出版信息
Adv Colloid Interface Sci. 2025 Apr;338:103399. doi: 10.1016/j.cis.2025.103399. Epub 2025 Jan 10.
Covalent organic frameworks (COFs) are a class of porous crystalline materials with high surface areas, tunable pore sizes, and customizable surface chemistry, making them ideal for selective metal ion separation. This review explores the nanoarchitectonics, mechanisms, and applications of COFs in metal ion separation. We highlight the diverse bonding types (e.g., imine, boronic ester) and topologies (2D and 3D) that enable precise separation for alkali, alkaline earth, transition, and precious metals. The influence of COFs' pore characteristics, such as surface area, pore size, and distribution, on their adsorption capacity and selectivity is discussed. Additionally, surface functionalization enhances ion adsorption through electrostatic, coordination, and polarity interactions. Despite significant progress, challenges remain, including optimizing functional design for complex metal systems, improving material stability, and developing cost-effective synthesis methods. COFs also show promise in energy material recovery, biomedical diagnostics, and environmental remediation. Combining COFs with other separation technologies can enhance performance, and integrating AI and robotics in COF design may address current limitations, enabling broader industrial and environmental applications.
共价有机框架(COFs)是一类具有高比表面积、可调节孔径和可定制表面化学性质的多孔晶体材料,使其成为选择性金属离子分离的理想材料。本综述探讨了COFs在金属离子分离中的纳米结构、机理和应用。我们重点介绍了多种键合类型(如亚胺、硼酸酯)和拓扑结构(二维和三维),这些能够实现对碱金属、碱土金属、过渡金属和贵金属的精确分离。讨论了COFs的孔特征(如比表面积、孔径和分布)对其吸附容量和选择性的影响。此外,表面功能化通过静电、配位和极性相互作用增强离子吸附。尽管取得了重大进展,但挑战依然存在,包括针对复杂金属系统优化功能设计、提高材料稳定性以及开发具有成本效益的合成方法。COFs在能源材料回收、生物医学诊断和环境修复方面也显示出前景。将COFs与其他分离技术相结合可以提高性能,在COF设计中整合人工智能和机器人技术可能会解决当前的局限性,从而实现更广泛的工业和环境应用。