Reorganization of gray matter networks in patients with Moyamoya disease.

作者信息

Zhu Huan, Wang Peijiong, Li Wenjie, Zhang Qihang, Zhu Chenyu, Liu Tong, Yu Tao, Liu Xingju, Zhang Qian, Zhao Jizong, Zhang Yan

机构信息

Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.

Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.

出版信息

Sci Rep. 2025 Jan 22;15(1):2788. doi: 10.1038/s41598-025-86553-3.

Abstract

Patients with Moyamoya disease (MMD) exhibit significant alterations in brain structure and function, but knowledge regarding gray matter networks is limited. The study enrolled 136 MMD patients and 99 healthy controls (HCs). Clinical characteristics and gray matter network topology were analyzed. Compared to HCs, MMD patients exhibited decreased clustering coefficient (Cp) (P = 0.006) and local efficiency (Eloc) (P = 0.013). Ischemic patients showed decreased Eloc and increased characteristic path length (Lp) compared to asymptomatic and hemorrhagic patients (P < 0.001, Bonferroni corrected). MMD patients had significant regional abnormalities, including decreased degree centrality (DC) in the left medial orbital superior frontal gyrus, left orbital inferior frontal gyrus, and right calcarine fissure and surrounding cortex (P < 0.05, FDR corrected). Increased DC was found in bilateral olfactory regions, with higher betweenness centrality (BC) in the right median cingulate, paracingulate fusiform gyrus, and left pallidum (P < 0.05, FDR corrected). Ischemic patients had lower BC in the right hippocampus compared to hemorrhagic patients, while hemorrhagic patients had decreased DC in the right triangular part of the inferior frontal gyrus compared to asymptomatic patients (P < 0.05, Bonferroni corrected). Subnetworks related to MMD and white matter hyperintensity volume were identified. There is significant reorganization of gray matter networks in patients compared to HCs, and among different types of patients. Gray matter networks can effectively detect MMD-related brain structural changes.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索