Suppr超能文献

个体水平脑形态相似性网络:当前方法学与应用。

Individual-level brain morphological similarity networks: Current methodologies and applications.

机构信息

Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China.

Department of Scientific Research, Tianjin Medical University General Hospital, Tianjin, China.

出版信息

CNS Neurosci Ther. 2023 Dec;29(12):3713-3724. doi: 10.1111/cns.14384. Epub 2023 Jul 30.

Abstract

AIMS

The human brain is an extremely complex system in which neurons, clusters of neurons, or regions are connected to form a complex network. With the development of neuroimaging techniques, magnetic resonance imaging (MRI)-based brain networks play a key role in our understanding of the intricate architecture of human brain. Among them, the structural MRI-based brain morphological network approach has attracted increasing attention due to the advantages in data acquisition, image quality, and in revealing the structural organizing principles intrinsic to the brain. This review is to summarize the methodology and related applications of individual-level morphological networks.

BACKGROUND

There have been a growing number of studies related to brain morphological similarity networks. Conventional morphological networks are intersubject covariance networks constructed using a certain morphological indicator of a group of subjects; individual-level morphological networks, on the other hand, measure the morphological similarity between brain regions for individual brains and can reflect the morphological information of single subjects. In recent years, individual morphological networks have demonstrated significant worth in exploring the topological changes of the human brain under both normal and disease conditions. Such studies provided novel perspectives for understanding human brain development and exploring the pathological mechanisms of neuropsychiatric disorders.

CONCLUSION

This paper mainly focuses on the studies of brain morphological networks at the individual level, introduces several ways for network construction, reviews representative work in this field, and finally points out current problems and future directions.

摘要

目的

人类大脑是一个极其复杂的系统,其中神经元、神经元集群或区域相互连接形成一个复杂的网络。随着神经影像学技术的发展,基于磁共振成像(MRI)的脑网络在我们理解人类大脑错综复杂的结构方面发挥着关键作用。其中,基于结构 MRI 的脑形态网络方法由于在数据采集、图像质量以及揭示大脑内在结构组织原则方面的优势而受到越来越多的关注。本综述旨在总结个体水平形态网络的方法学和相关应用。

背景

与脑形态相似性网络相关的研究越来越多。传统的形态网络是使用一组被试的某种形态指标构建的组间协方差网络;而个体水平的形态网络则测量个体大脑之间的形态相似性,反映了单个被试的形态信息。近年来,个体形态网络在探索正常和疾病状态下人类大脑的拓扑变化方面表现出了显著的价值。这些研究为理解人类大脑发育和探索神经精神障碍的病理机制提供了新的视角。

结论

本文主要关注个体水平的脑形态网络研究,介绍了几种网络构建方法,综述了该领域的代表性工作,最后指出了当前的问题和未来的方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5e4/10651978/57697fb304d6/CNS-29-3713-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验