Li Christine, Camac James, Robinson Andrew, Kompas Tom
School of BioSciences, Centre of Excellence for Biosecurity Risk Analysis, University of Melbourne, Melbourne, 3010, Australia.
School of Agriculture, Food and Ecosystem Sciences, University of Melbourne, Melbourne, 3010, Australia.
Sci Rep. 2025 Jan 22;15(1):2858. doi: 10.1038/s41598-025-87047-y.
Climate change has direct impacts on current and future agricultural productivity. Statistical meta-analysis models can be used to generate expectations of crop yield responses to climatic factors by pooling data from controlled experiments. However, methodological challenges in performing these meta-analyses, together with combined uncertainty from various sources, make it difficult to validate model results. We present updates to published estimates of crop yield responses to projected temperature, precipitation, and CO2 patterns and show that mixed effects models perform better than pooled OLS models on root mean squared error (RMSE) and explained deviance, despite the common usage of pooled OLS in previous meta-analyses. Based on our analysis, the use of pooled OLS may underestimate yield losses. We also use a block-bootstrapping approach to quantify uncertainty across multiple dimensions, including modeler choices, climate projections from the sixth Coupled Model Intercomparison Project (CMIP6), and emissions scenarios from Shared Socioeconomic Pathways (SSP). Our estimates show projected yield responses of - 22% (maize), - 9% (rice), - 15% (soy), and - 14% (wheat) from 2015 to 2080-2100 under the business-as-usual scenario of SSP5-8.5, which reduce to - 3.8%, - 2.7%, 1.4%, and - 1.5% respectively under the lower emissions scenario of SSP1-2.6. Without mitigation and adaptation, countries in South Asia, sub-Saharan Africa, North America, and Oceania could become at risk of being unable to meet national calorie demand by the end of the century under the most severe emissions scenario.
气候变化对当前和未来的农业生产力有着直接影响。统计元分析模型可通过汇总来自对照实验的数据,来生成作物产量对气候因素响应的预期。然而,进行这些元分析时存在方法上的挑战,再加上来自各种来源的综合不确定性,使得验证模型结果变得困难。我们给出了已发表的作物产量对预计温度、降水和二氧化碳模式响应估计的更新内容,并表明,尽管在以往的元分析中普遍使用合并OLS模型,但混合效应模型在均方根误差(RMSE)和解释偏差方面的表现优于合并OLS模型。基于我们的分析,使用合并OLS模型可能会低估产量损失。我们还采用了块自抽样方法来量化多个维度的不确定性,包括建模者的选择、第六次耦合模式比较计划(CMIP6)的气候预测以及共享社会经济路径(SSP)的排放情景。我们的估计显示,在SSP5-8.5照常情景下,2015年至2080-2100年玉米、水稻、大豆和小麦的预计产量响应分别为-22%、-9%、-15%和-14%,而在SSP1-2.6较低排放情景下,分别降至-3.8%、-2.7%、1.4%和-1.5%。在最严峻的排放情景下,如果不进行缓解和适应,到本世纪末,南亚国家、撒哈拉以南非洲国家、北美国家和大洋洲国家可能面临无法满足国家卡路里需求的风险。