Chong Charlotte E, Pham Thi Mui, Carey Megan E, Wee Bryan A, Taouk Mona L, Favieres Javier F, Moore Catrin E, Dyson Zoe A, Lim Cherry, Brown Connor L, Williamson Deborah, Opatowski Lulla, Outterson Kevin, Mukiri Karyn M, Sherry Norelle L, Essack Sabiha Y, Brisse Sylvain, Grad Yonatan H, Baker Kate S
Department of Genetics, University of Cambridge, Cambridge, United Kingdom.
Department of Immunology and Infectious Diseases Harvard T. H. Chan School of Public Health, Boston, MA, USA.
NPJ Antimicrob Resist. 2024 Nov 29;2(1):43. doi: 10.1038/s44259-024-00058-z.
The Antimicrobial Resistance - Genomes, Big Data and Emerging Technologies Conference explored key topics including measuring the burden of AMR, global public health pathogen genomics infrastructure and surveillance, translation and implementation of genomics for AMR control, use of techniques such as wastewater surveillance, mathematical and statistical modelling, and Artificial Intelligence (AI) to aid understanding of AMR. This report describes research presented during plenary sessions and discussions, keynote presentations and posters.
抗菌药物耐药性——基因组、大数据与新兴技术会议探讨了关键主题,包括衡量抗菌药物耐药性的负担、全球公共卫生病原体基因组学基础设施与监测、基因组学在抗菌药物耐药性控制方面的转化与实施、利用废水监测、数学和统计建模以及人工智能等技术来辅助理解抗菌药物耐药性。本报告介绍了全会、讨论、主题演讲和海报展示期间所呈现的研究内容。