Réda Clémence, Vie Jill-Jênn, Wolkenhauer Olaf
Institute of Computer Science, University of Rostock, 18051, Rostock, Germany.
Soda, Inria Saclay, 91120, Palaiseau, France.
BMC Bioinformatics. 2025 Jan 22;26(1):26. doi: 10.1186/s12859-024-06026-8.
Interpretability is a topical question in recommender systems, especially in healthcare applications. An interpretable classifier quantifies the importance of each input feature for the predicted item-user association in a non-ambiguous fashion.
We introduce the novel Joint Embedding Learning-classifier for improved Interpretability (JELI). By combining the training of a structured collaborative-filtering classifier and an embedding learning task, JELI predicts new user-item associations based on jointly learned item and user embeddings while providing feature-wise importance scores. Therefore, JELI flexibly allows the introduction of priors on the connections between users, items, and features. In particular, JELI simultaneously (a) learns feature, item, and user embeddings; (b) predicts new item-user associations; (c) provides importance scores for each feature. Moreover, JELI instantiates a generic approach to training recommender systems by encoding generic graph-regularization constraints.
First, we show that the joint training approach yields a gain in the predictive power of the downstream classifier. Second, JELI can recover feature-association dependencies. Finally, JELI induces a restriction in the number of parameters compared to baselines in synthetic and drug-repurposing data sets.
可解释性是推荐系统中的一个热门问题,尤其是在医疗保健应用中。一个可解释的分类器以一种明确的方式量化每个输入特征对于预测的项目-用户关联的重要性。
我们引入了用于提高可解释性的新型联合嵌入学习分类器(JELI)。通过结合结构化协同过滤分类器的训练和嵌入学习任务,JELI基于联合学习的项目和用户嵌入预测新的用户-项目关联,同时提供特征重要性得分。因此,JELI灵活地允许在用户、项目和特征之间的连接上引入先验知识。特别是,JELI同时(a)学习特征、项目和用户嵌入;(b)预测新的项目-用户关联;(c)为每个特征提供重要性得分。此外,JELI通过编码通用的图正则化约束实例化了一种训练推荐系统的通用方法。
首先,我们表明联合训练方法提高了下游分类器的预测能力。其次,JELI可以恢复特征关联依赖性。最后,与合成数据集和药物再利用数据集中的基线相比,JELI在参数数量上有所限制。