Kembaren Riahna, Parikesit Arli Aditya, Nataniel Jocelyn, Dharmawan Nethania Angeline, Dungus Charlivo Mikaichi, Angelique Priscilla, Aslanzadeh Solmaz
Department of Biotechnology, Indonesia International Institute for Life Sciences, East Jakarta, Indonesia.
Acta Biochim Pol. 2025 Jan 8;71:14000. doi: 10.3389/abp.2024.14000. eCollection 2024.
Erythritol is a beneficial sugar alcohol that can be used as a sugar substitute for diabetic patients. Erythritol is a bioproduct produced by microorganisms as a response to high osmotic pressure and stress in the growth medium. High concentrations of carbon source substrate can increase the osmotic pressure and provide more nutrient supply for yeast growth and metabolism. Aside from that, an optimal carbon-to-nitrogen (C/N) ratio can also make the erythritol conversion pathway more favorable. Therefore, this research aims to determine the optimal concentrations of molasses as the carbon source, yeast extract as the nitrogen source, and the optimal carbon-to-nitrogen (C/N) ratio to achieve the highest erythritol productivity. The research also seeks to optimize NaCl concentrations and pH while comparing batch and fed-batch fermentation systems to determine which produces a higher erythritol yield. One-Factor-at-A-Time (OFAT) method was used to identify optimal production conditions. The study found that the highest erythritol concentration, 17.48 ± 0.86 g/L, was achieved using 200 g/L of molasses, 7 g/L of yeast extract (200/7), and 25 g/L of NaCl, with a yield mass of 0.262 ± 0.00 g/g and a volumetric productivity of 0.095 ± 0.021 g/Lh. The pH optimization revealed that the best erythritol production occurred within a pH of 5. Furthermore, fed-batch fermentation significantly increased erythritol concentration to 26.52 ± 1.61 g/L, with a yield mass of 0.501 ± 0.032 g/g and a volumetric productivity of 0.158 ± 0.01 g/Lh. These findings emphasize the importance of optimizing carbon source, nitrogen source and NaCl concentration, pH, and fermentation systems, particularly highlighting the benefits of fed-batch fermentation in maximizing erythritol production. These findings provide a solid foundation for improving erythritol yields for industrial applications.
赤藓糖醇是一种有益的糖醇,可作为糖尿病患者的糖替代品。赤藓糖醇是微生物在生长培养基中对高渗透压和压力作出反应而产生的生物产品。高浓度的碳源底物可以增加渗透压,并为酵母的生长和代谢提供更多的营养供应。除此之外,最佳的碳氮(C/N)比也可以使赤藓糖醇的转化途径更有利。因此,本研究旨在确定作为碳源的糖蜜、作为氮源的酵母提取物的最佳浓度,以及实现最高赤藓糖醇生产率的最佳碳氮(C/N)比。该研究还试图优化氯化钠浓度和pH值,同时比较分批发酵和补料分批发酵系统,以确定哪种系统能产生更高的赤藓糖醇产量。采用一次一因素(OFAT)方法来确定最佳生产条件。研究发现,使用200 g/L的糖蜜、7 g/L的酵母提取物(200/7)和25 g/L的氯化钠,可实现最高的赤藓糖醇浓度,为17.48±0.86 g/L,产量质量为0.262±0.00 g/g,体积生产率为0.095±0.021 g/Lh。pH值优化表明,在pH值为5时赤藓糖醇产量最高。此外,补料分批发酵显著提高了赤藓糖醇浓度,达到26.52±1.61 g/L,产量质量为0.501±0.032 g/g,体积生产率为0.158±0.01 g/Lh。这些发现强调了优化碳源、氮源和氯化钠浓度、pH值以及发酵系统的重要性,尤其突出了补料分批发酵在最大化赤藓糖醇产量方面的优势。这些发现为提高工业应用中赤藓糖醇的产量奠定了坚实的基础。