Tielemans Birger, Marain Nora F, Kerstens Axelle, Peredo Nicolas, Coll-Lladó Montserrat, Gritti Nicola, de Villemagne Perrine, Dorval Paul, Geudens Vincent, Orlitová Michaela, Munck Sebastian, Leszczyński Bartosz, Swoger Jim, Velde Greetje Vande
Department of Imaging and Pathology, Biomedical MRI KU Leuven Leuven Belgium.
Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE) KU Leuven Leuven Belgium.
Pulm Circ. 2025 Jan 21;15(1):e70038. doi: 10.1002/pul2.70038. eCollection 2025 Jan.
The pulmonary vasculature plays a pivotal role in the development and progress of chronic lung diseases. Due to limitations of conventional two-dimensional histological methods, the complexity and the detailed anatomy of the lung blood circulation might be overlooked. In this study, we demonstrate the practical use of optical serial block face imaging (SBFI), ex vivo microcomputed tomography (micro-CT), and nondestructive optical tomography for visualization and quantification of the pulmonary circulation's 3D architecture from macro- to micro-structural levels in murine lung samples. We demonstrate that SBFI can provide rapid, cost-effective, and label-free visualization of mouse lung macrostructures and large pulmonary vessels. Micro-CT offers high-resolution imaging and captures microvascular and (pre)capillary structures, with microstructural quantification. Optical microscopy techniques such as optical projection tomography (OPT) and light sheet fluorescence microscopy, allows noninvasive, mesoscopic imaging of optically cleared mouse lungs, still enabling 3D microscopic reconstruction down to the precapillary level. By integrating SBFI, micro-CT, and nondestructive optical microscopy, we provide a framework for detailed and 3D understanding of the pulmonary circulation, with emphasis on vascular pruning and rarefaction. Our study showcases the applicability and complementarity of these techniques for organ-level vascular imaging, offering researchers flexibility in selecting the optimal approach based on their specific requirements. In conclusion, we propose 3D-directed approaches for a detailed whole-organ view on the pulmonary vasculature in health and disease, to advance our current knowledge of diseases affecting the pulmonary vasculature.
肺血管系统在慢性肺部疾病的发生和发展中起着关键作用。由于传统二维组织学方法的局限性,肺血液循环的复杂性和详细解剖结构可能会被忽视。在本研究中,我们展示了光学连续块面成像(SBFI)、离体微型计算机断层扫描(micro-CT)和无损光学断层扫描在可视化和量化小鼠肺样本中从宏观到微观结构水平的肺循环三维结构方面的实际应用。我们证明,SBFI可以提供快速、经济高效且无标记的小鼠肺宏观结构和大型肺血管可视化。Micro-CT提供高分辨率成像,并捕获微血管和(前)毛细血管结构,同时进行微观结构量化。光学显微镜技术,如光学投影断层扫描(OPT)和光片荧光显微镜,允许对光学透明的小鼠肺进行无创的介观成像,仍然能够进行三维微观重建直至毛细血管前水平。通过整合SBFI、micro-CT和无损光学显微镜,我们提供了一个详细三维理解肺循环的框架,重点是血管修剪和稀疏化。我们的研究展示了这些技术在器官水平血管成像中的适用性和互补性,为研究人员根据其特定需求选择最佳方法提供了灵活性。总之,我们提出了三维导向方法,以详细了解健康和疾病状态下肺血管系统的全器官视图,以推进我们目前对影响肺血管系统疾病的认识。