Suppr超能文献

锥形交叉点处产生的电子动力学及其在水溶液中的退相

Electronic dynamics created at conical intersections and its dephasing in aqueous solution.

作者信息

Chang Yi-Ping, Balciunas Tadas, Yin Zhong, Sapunar Marin, Tenorio Bruno N C, Paul Alexander C, Tsuru Shota, Koch Henrik, Wolf Jean-Pierre, Coriani Sonia, Wörner Hans Jakob

机构信息

GAP-Biophotonics, Université de Genève, Geneva, Switzerland.

European XFEL, Schenefeld, Germany.

出版信息

Nat Phys. 2025;21(1):137-145. doi: 10.1038/s41567-024-02703-w. Epub 2024 Nov 27.

Abstract

A dynamical rearrangement in the electronic structure of a molecule can be driven by different phenomena, including nuclear motion, electronic coherence or electron correlation. Recording such electronic dynamics and identifying its fate in an aqueous solution has remained a challenge. Here, we reveal the electronic dynamics induced by electronic relaxation through conical intersections in both isolated and solvated pyrazine molecules using X-ray spectroscopy. We show that the ensuing created dynamics corresponds to a cyclic rearrangement of the electronic structure around the aromatic ring. Furthermore, we found that such electronic dynamics were entirely suppressed when pyrazine was dissolved in water. Our observations confirm that conical intersections can create electronic dynamics that are not directly excited by the pump pulse and that aqueous solvation can dephase them in less than 40 fs. These results have implications for the investigation of electronic dynamics created during light-induced molecular dynamics and shed light on their susceptibility to aqueous solvation.

摘要

分子电子结构的动态重排可由不同现象驱动,包括核运动、电子相干或电子关联。记录这种电子动力学并确定其在水溶液中的最终状态仍然是一项挑战。在这里,我们使用X射线光谱揭示了孤立和溶剂化的吡嗪分子中通过锥形交叉点的电子弛豫所诱导的电子动力学。我们表明,随后产生的动力学对应于芳环周围电子结构的循环重排。此外,我们发现当吡嗪溶解于水中时,这种电子动力学被完全抑制。我们的观察结果证实,锥形交叉点可以产生并非直接由泵浦脉冲激发的电子动力学,并且水溶剂化可以在不到40飞秒的时间内使它们去相位。这些结果对光诱导分子动力学过程中产生的电子动力学的研究具有启示意义,并揭示了它们对水溶剂化的敏感性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9659/11746140/8de031036b51/41567_2024_2703_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验