Suppr超能文献

经皮冠状动脉介入治疗后风险预测的机器学习方法:系统评价与荟萃分析

Machine learning approaches for risk prediction after percutaneous coronary intervention: a systematic review and meta-analysis.

作者信息

Zaka Ammar, Mutahar Daud, Gorcilov James, Gupta Aashray K, Kovoor Joshua G, Stretton Brandon, Mridha Naim, Sivagangabalan Gopal, Thiagalingam Aravinda, Chow Clara K, Zaman Sarah, Jayasinghe Rohan, Kovoor Pramesh, Bacchi Stephen

机构信息

Department of Cardiology, Gold Coast University Hospital, 1 Hospital Boulevard, Southport, QLD 4215, Australia.

Faculty of Health Sciences and Medicine, Bond University, 14 University Drive, Robina, QLD 4216, Australia.

出版信息

Eur Heart J Digit Health. 2024 Oct 14;6(1):23-44. doi: 10.1093/ehjdh/ztae074. eCollection 2025 Jan.

Abstract

AIMS

Accurate prediction of clinical outcomes following percutaneous coronary intervention (PCI) is essential for mitigating risk and peri-procedural planning. Traditional risk models have demonstrated a modest predictive value. Machine learning (ML) models offer an alternative risk stratification that may provide improved predictive accuracy.

METHODS AND RESULTS

This study was reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses, Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies and Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis guidelines. PubMed, EMBASE, Web of Science, and Cochrane databases were searched until 1 November 2023 for studies comparing ML models with traditional statistical methods for event prediction after PCI. The primary outcome was comparative discrimination measured by -statistics with 95% confidence intervals (CIs) between ML models and traditional methods in estimating the risk of all-cause mortality, major bleeding, and the composite outcome major adverse cardiovascular events (MACE). Thirty-four models were included across 13 observational studies (4 105 916 patients). For all-cause mortality, the pooled -statistic for top-performing ML models was 0.89 (95%CI, 0.84-0.91), compared with 0.86 (95% CI, 0.80-0.93) for traditional methods ( = 0.54). For major bleeding, the pooled -statistic for ML models was 0.80 (95% CI, 0.77-0.84), compared with 0.78 (95% CI, 0.77-0.79) for traditional methods ( = 0.02). For MACE, the -statistic for ML models was 0.83 (95% CI, 0.75-0.91), compared with 0.71 (95% CI, 0.69-0.74) for traditional methods ( = 0.007). Out of all included models, only one model was externally validated. Calibration was inconsistently reported across all models. Prediction Model Risk of Bias Assessment Tool demonstrated a high risk of bias across all studies.

CONCLUSION

Machine learning models marginally outperformed traditional risk scores in the discrimination of MACE and major bleeding following PCI. While integration of ML algorithms into electronic healthcare systems has been hypothesized to improve peri-procedural risk stratification, immediate implementation in the clinical setting remains uncertain. Further research is required to overcome methodological and validation limitations.

摘要

目的

准确预测经皮冠状动脉介入治疗(PCI)后的临床结局对于降低风险和进行围手术期规划至关重要。传统风险模型已显示出一定的预测价值。机器学习(ML)模型提供了一种替代的风险分层方法,可能会提高预测准确性。

方法和结果

本研究是根据系统评价和Meta分析的首选报告项目、预测模型研究系统评价的关键评估和数据提取以及个体预后或诊断多变量预测模型的透明报告指南进行报告的。检索了PubMed、EMBASE、科学网和Cochrane数据库,直至2023年11月1日,以查找比较ML模型与传统统计方法在PCI后事件预测方面的研究。主要结局是通过ML模型与传统方法在估计全因死亡率、大出血和复合结局重大不良心血管事件(MACE)风险时的 - 统计量及95%置信区间(CI)来衡量的比较辨别力。13项观察性研究(4105916例患者)共纳入了34个模型。对于全因死亡率,表现最佳的ML模型的合并 - 统计量为0.89(95%CI,0.84 - 0.91),而传统方法为0.86(95%CI,0.80 - 0.93)(P = 0.54)。对于大出血,ML模型的合并 - 统计量为0.80(95%CI,0.77 - 0.84),而传统方法为0.78(95%CI,0.77 - 0.79)(P = 0.02)。对于MACE,ML模型的 - 统计量为0.83(95%CI,0.75 - 0.91),而传统方法为0.71(95%CI,0.69 - 0.74)(P = 0.007)。在所有纳入的模型中,只有一个模型进行了外部验证。所有模型的校准报告不一致。预测模型偏倚风险评估工具显示所有研究均存在较高的偏倚风险。

结论

在PCI后MACE和大出血的辨别方面,机器学习模型略优于传统风险评分。虽然有人假设将ML算法整合到电子医疗系统中可改善围手术期风险分层,但在临床环境中的立即实施仍不确定。需要进一步研究以克服方法学和验证方面的局限性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fa0/11750198/4799ff5eb95f/ztae074_ga.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验