Suppr超能文献

校准机器学习方法进行概率估计:全面比较。

Calibrating machine learning approaches for probability estimation: A comprehensive comparison.

机构信息

Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

Centre for Population Health Innovation (POINT), University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

出版信息

Stat Med. 2023 Dec 20;42(29):5451-5478. doi: 10.1002/sim.9921. Epub 2023 Oct 17.

Abstract

Statistical prediction models have gained popularity in applied research. One challenge is the transfer of the prediction model to a different population which may be structurally different from the model for which it has been developed. An adaptation to the new population can be achieved by calibrating the model to the characteristics of the target population, for which numerous calibration techniques exist. In view of this diversity, we performed a systematic evaluation of various popular calibration approaches used by the statistical and the machine learning communities for estimating two-class probabilities. In this work, we first provide a review of the literature and, second, present the results of a comprehensive simulation study. The calibration approaches are compared with respect to their empirical properties and relationships, their ability to generalize precise probability estimates to external populations and their availability in terms of easy-to-use software implementations. Third, we provide code from real data analysis allowing its application by researchers. Logistic calibration and beta calibration, which estimate an intercept plus one and two slope parameters, respectively, consistently showed the best results in the simulation studies. Calibration on logit transformed probability estimates generally outperformed calibration methods on nontransformed estimates. In case of structural differences between training and validation data, re-estimation of the entire prediction model should be outweighted against sample size of the validation data. We recommend regression-based calibration approaches using transformed probability estimates, where at least one slope is estimated in addition to an intercept for updating probability estimates in validation studies.

摘要

统计预测模型在应用研究中越来越受欢迎。其中一个挑战是将预测模型转移到不同的人群,这个人群的结构可能与模型开发人群的结构不同。通过对目标人群的特征进行校准,可以实现对新人群的适应,为此存在许多校准技术。鉴于这种多样性,我们对统计和机器学习社区用于估计两类概率的各种流行校准方法进行了系统评估。在这项工作中,我们首先对文献进行了综述,其次介绍了一项综合模拟研究的结果。我们比较了校准方法在经验特性和关系、将精确概率估计推广到外部人群的能力以及易于使用的软件实现方面的差异。第三,我们提供了真实数据分析的代码,允许研究人员进行应用。在模拟研究中,逻辑校准和贝塔校准分别估计一个截距和一个斜率参数,表现出了最好的结果。对逻辑变换概率估计的校准通常优于对非变换估计的校准方法。在训练数据和验证数据之间存在结构差异的情况下,重新估计整个预测模型应该优先于验证数据的样本量。我们建议在验证研究中使用基于回归的校准方法,对变换后的概率估计进行校准,除了截距之外,还要估计至少一个斜率,以更新概率估计。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验