Suppr超能文献

BaNDyT:分子动力学轨迹的贝叶斯网络建模

BaNDyT: Bayesian Network Modeling of Molecular Dynamics Trajectories.

作者信息

Mukhaleva Elizaveta, Manookian Babgen, Chen Hanyu, Sivaraj Indira R, Ma Ning, Wei Wenyuan, Urbaniak Konstancja, Gogoshin Grigoriy, Bhattacharya Supriyo, Vaidehi Nagarajan, Rodin Andrei S, Branciamore Sergio

机构信息

Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, 1218 S 5th Ave, Monrovia, California 91016, United States.

Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, 1500 E Duarte Road, Duarte, California 91010, United States.

出版信息

J Chem Inf Model. 2025 Feb 10;65(3):1278-1288. doi: 10.1021/acs.jcim.4c01981. Epub 2025 Jan 23.

Abstract

Bayesian network modeling (BN modeling, or BNM) is an interpretable machine learning method for constructing probabilistic graphical models from the data. In recent years, it has been extensively applied to diverse types of biomedical data sets. Concurrently, our ability to perform long-time scale molecular dynamics (MD) simulations on proteins and other materials has increased exponentially. However, the analysis of MD simulation trajectories has not been data-driven but rather dependent on the user's prior knowledge of the systems, thus limiting the scope and utility of the MD simulations. Recently, we pioneered using BNM for analyzing the MD trajectories of protein complexes. The resulting BN models yield novel fully data-driven insights into the functional importance of the amino acid residues that modulate proteins' function. In this report, we describe the BaNDyT software package that implements the BNM specifically attuned to the MD simulation trajectories data. We believe that BaNDyT is the first software package to include specialized and advanced features for analyzing MD simulation trajectories using a probabilistic graphical network model. We describe here the software's uses, the methods associated with it, and a comprehensive Python interface to the underlying generalist BNM code. This provides a powerful and versatile mechanism for users to control the workflow. As an application example, we have utilized this methodology and associated software to study how membrane proteins, specifically the G protein-coupled receptors, selectively couple to G proteins. The software can be used for analyzing MD trajectories of any protein as well as polymeric materials.

摘要

贝叶斯网络建模(BN建模,或BNM)是一种可解释的机器学习方法,用于从数据构建概率图形模型。近年来,它已被广泛应用于各种类型的生物医学数据集。同时,我们对蛋白质和其他材料进行长时间尺度分子动力学(MD)模拟的能力呈指数级增长。然而,MD模拟轨迹的分析并非数据驱动,而是依赖于用户对系统的先验知识,从而限制了MD模拟的范围和效用。最近,我们率先使用BNM分析蛋白质复合物的MD轨迹。所得的BN模型对调节蛋白质功能的氨基酸残基的功能重要性产生了全新的完全数据驱动的见解。在本报告中,我们描述了BaNDyT软件包,该软件包实现了专门针对MD模拟轨迹数据进行调整的BNM。我们相信BaNDyT是第一个包含使用概率图形网络模型分析MD模拟轨迹的专门和高级功能的软件包。我们在此描述该软件的用途、与之相关的方法以及与底层通用BNM代码的全面Python接口。这为用户提供了一个强大且通用的控制工作流程的机制。作为一个应用示例,我们利用这种方法和相关软件研究膜蛋白,特别是G蛋白偶联受体,如何选择性地与G蛋白偶联。该软件可用于分析任何蛋白质以及聚合材料的MD轨迹。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验