Suppr超能文献

利用比较扰动系综分析检测蛋白质中的功能动力学。

Detecting Functional Dynamics in Proteins with Comparative Perturbed-Ensembles Analysis.

机构信息

Department of Chemistry , Georgia State University , Atlanta , Georgia 30302-3965 , United States.

出版信息

Acc Chem Res. 2019 Dec 17;52(12):3455-3464. doi: 10.1021/acs.accounts.9b00485. Epub 2019 Dec 3.

Abstract

Recent advances have made all-atom molecular dynamics (MD) a powerful tool to sample the conformational energy landscape. There are still however three major challenges in the application of MD to biological systems: accuracy of force field, time scale, and the analysis of simulation trajectories. Significant progress in addressing the first two challenges has been made and extensively reviewed previously. This Account focuses on strategies of analyzing simulation data of biomolecules that also covers ways to properly design simulations and validate simulation results. In particular, we examine an approach named , which we developed to efficiently detect dynamics in protein MD simulations that can be linked to biological functions. In our recent studies, we implemented this approach to understand allosteric regulations in several disease-associated human proteins. The central task of a comparative perturbed-ensembles analysis is to compare two or more conformational ensembles of a system generated by MD simulations under distinct perturbation conditions. Perturbations can be different sequence variations, ligand-binding conditions, and other physical/chemical modifications of the system. Each simulation is long enough (e.g., microsecond-long) to ensure sufficient sampling of the local substate. Then, sophisticated bioinformatic and statistical tools are applied to extract function-related information from the simulation data, including principal component analysis, residue-residue contact analysis, difference contact network analysis (dCNA) based on the graph theory, and statistical analysis of side-chain conformations. Computational findings are further validated with experimental data. By comparing distinct conformational ensembles, functional micro- to millisecond dynamics can be inferred. In contrast, such a time scale is difficult to reach in a single simulation; even when reached for a single condition of a system, it is elusive as to what dynamical motions are related to functions without, for example, comparing free and substrate-bound proteins at the minimum. We illustrate our approach with three examples. First, we discuss using the approach to identify allosteric pathways in cyclophilin A (CypA), a member of a ubiquitous class of peptidyl-prolyl isomerase enzymes. By comparing side-chain torsion-angle distributions of CypA in wild-type and mutant forms, we identified three pathways: two are consistent with recent nuclear magnetic resonance experiments, whereas the third is a novel pathway. Second, we show how the approach enables a dynamical-evolution analysis of the human cyclophilin family. In the analysis, both conserved and divergent conformational dynamics across three cyclophilin isoforms (CypA, CypD, and CypE) were summarized. The conserved dynamics led to the discovery of allosteric networks resembling those found in CypA. A residue wise determinant underlying the unique dynamics in CypD was also detected and validated with additional mutational MD simulations. In the third example, we applied the approach to elucidate a peptide sequence-dependent allosteric mechanism in human Pin 1, a phosphorylation-dependent peptidyl-prolyl isomerase. We finally present our outlook of future directions. Especially, we envisage how the approach could help open a new avenue in drug discovery.

摘要

近年来,全原子分子动力学(MD)已成为一种强大的工具,可以用于采样构象能量景观。然而,在将 MD 应用于生物系统时,仍然存在三个主要挑战:力场的准确性、时间尺度和模拟轨迹的分析。在解决前两个挑战方面已经取得了重大进展,并在之前进行了广泛的综述。本报告重点介绍了分析生物分子模拟数据的策略,其中还包括正确设计模拟和验证模拟结果的方法。特别是,我们研究了一种名为的方法,我们开发了该方法来有效地检测蛋白质 MD 模拟中的动力学,这些动力学可以与生物学功能相关联。在我们最近的研究中,我们实施了这种方法来理解几种与疾病相关的人类蛋白质中的变构调节。比较受扰体系分析的中心任务是比较 MD 模拟下两个或更多系统构象体系,这些模拟是在不同的扰动条件下生成的。扰动可以是不同的序列变化、配体结合条件以及系统的其他物理/化学修饰。每个模拟都足够长(例如微秒长),以确保对局部亚态进行充分采样。然后,应用复杂的生物信息学和统计工具从模拟数据中提取与功能相关的信息,包括主成分分析、残基-残基接触分析、基于图论的差异接触网络分析(dCNA)以及侧链构象的统计分析。计算结果通过实验数据进一步验证。通过比较不同的构象体系,可以推断出功能微秒至毫秒级的动力学。相比之下,在单个模拟中很难达到这样的时间尺度;即使在系统的单个条件下达到了,也很难确定哪些动力学运动与功能有关,例如在没有比较游离和底物结合的蛋白质的情况下,没有比较最小的蛋白质。我们将通过三个示例来说明我们的方法。首先,我们讨论使用该方法来识别亲环素 A(CypA)中的变构途径,亲环素 A 是一类普遍存在的肽基脯氨酰顺反异构酶酶的成员。通过比较 CypA 野生型和突变体形式的侧链扭转角分布,我们确定了三种途径:两种途径与最近的核磁共振实验一致,而第三种途径是一种新途径。其次,我们展示了该方法如何使人类亲环素家族的动力学演化分析成为可能。在分析中,总结了三种亲环素同工酶(CypA、CypD 和 CypE)之间的保守和发散构象动力学。保守的动力学导致发现了类似于 CypA 中发现的变构网络。还检测到并通过额外的突变 MD 模拟验证了 CypD 中独特动力学的残基决定因素。在第三个例子中,我们应用该方法阐明了人类 Pin 1 中的肽序列依赖性变构机制,Pin 1 是一种磷酸化依赖性肽基脯氨酰顺反异构酶。最后,我们提出了对未来方向的展望。特别是,我们设想该方法如何帮助开辟药物发现的新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验