Suppr超能文献

基于疫苗株组成的抗体反应的现象学建模

Phenomenological Modeling of Antibody Response from Vaccine Strain Composition.

作者信息

Ovchinnikov Victor, Karplus Martin

机构信息

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.

Laboratoire de Chimie Biophysique, ISIS, Université de Strasbourg, 67000 Strasbourg, France.

出版信息

Antibodies (Basel). 2025 Jan 16;14(1):6. doi: 10.3390/antib14010006.

Abstract

The elicitation of broadly neutralizing antibodies (bnAbs) is a major goal of vaccine design for highly mutable pathogens, such as influenza, HIV, and coronavirus. Although many rational vaccine design strategies for eliciting bnAbs have been devised, their efficacies need to be evaluated in preclinical animal models and in clinical trials. To improve outcomes for such vaccines, it would be useful to develop methods that can predict vaccine efficacies against arbitrary pathogen variants. As a step in this direction, here, we describe a simple biologically motivated model of antibody reactivity elicited by nanoparticle-based vaccines using only antigen amino acid sequences, parametrized with a small sample of experimental antibody binding data from influenza or SARS-CoV-2 nanoparticle vaccinations. : The model is able to recapitulate the experimental data to within experimental uncertainty, is relatively insensitive to the choice of the parametrization/training set, and provides qualitative predictions about the antigenic epitopes exploited by the vaccine, which are testable by experiment. For the mosaic nanoparticle vaccines considered here, model results suggest indirectly that the sera obtained from vaccinated mice contain bnAbs, rather than simply different strain-specific Abs. Although the present model was motivated by nanoparticle vaccines, we also apply it to a mutlivalent mRNA flu vaccination study, and demonstrate good recapitulation of experimental results. This suggests that the model formalism is, in principle, sufficiently flexible to accommodate different vaccination strategies. Finally, we show how the model could be used to rank the efficacies of vaccines with different antigen compositions. : Overall, this study suggests that simple models of vaccine efficacy parametrized with modest amounts of experimental data could be used to compare the effectiveness of designed vaccines.

摘要

诱导广泛中和抗体(bnAbs)是针对高变异性病原体(如流感、艾滋病毒和冠状病毒)的疫苗设计的主要目标。尽管已经设计了许多诱导bnAbs的合理疫苗设计策略,但它们的疗效需要在临床前动物模型和临床试验中进行评估。为了改善此类疫苗的效果,开发能够预测针对任意病原体变体的疫苗疗效的方法将是有用的。作为朝这个方向迈出的一步,在此,我们描述了一种基于纳米颗粒的疫苗诱导的抗体反应性的简单生物学驱动模型,该模型仅使用抗原氨基酸序列,并根据来自流感或SARS-CoV-2纳米颗粒疫苗接种的少量实验抗体结合数据进行参数化。该模型能够在实验不确定性范围内重现实验数据,对参数化/训练集的选择相对不敏感,并提供关于疫苗利用的抗原表位的定性预测,这些预测可通过实验进行检验。对于此处考虑的嵌合纳米颗粒疫苗,模型结果间接表明,从接种疫苗的小鼠获得的血清中含有bnAbs,而不仅仅是不同菌株特异性的抗体。尽管本模型是由纳米颗粒疫苗驱动的,但我们也将其应用于多价mRNA流感疫苗接种研究,并证明了对实验结果的良好重现。这表明该模型形式原则上具有足够的灵活性以适应不同的疫苗接种策略。最后,我们展示了该模型如何用于对具有不同抗原组成的疫苗的疗效进行排名。总体而言,这项研究表明,用适量实验数据参数化的简单疫苗疗效模型可用于比较设计疫苗的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a46/11755667/46d94077c535/antibodies-14-00006-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验