Yang Mengling, Li Jinhao, Wang Chunyu, Yang Li, Fan Zhiwei, Wang Wenbin, Liu Guoquan, Cheng Lin, Qu Shaolei, Zhang Zhaoming, Zou Jiang, Yu Wei, Gu Guoying, Yan Xuzhou
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
Robotics Institute and State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
Angew Chem Int Ed Engl. 2025 Apr 7;64(15):e202423847. doi: 10.1002/anie.202423847. Epub 2025 Jan 31.
Ionogels have attracted considerable attention as versatile materials due to their unique ionic conductivity and thermal stability. However, relatively weak mechanical performance of many existing ionogels has hindered their broader application. Herein, we develop robust, tough, and impact-resistant mechanically interlocked network ionogels (MINs) by incorporating ion liquids with mechanical bonds that can dissipate energy while maintain structural stability. Profiting from the dynamic yet stable nature of the mechanically interlocked networks, MINs exhibit high tensile strength (9.6 MPa), fracture energy (39 kJ/m), and toughness (25.9 MJ/m), along with a high elongation rate (473 %) and excellent impact resistance and shape memory, resulting in overall performance that surpasses most reported ionogels. Furthermore, in the application of strain sensors for monitoring the gait of crawling robots, the toughness and robustness of MINs ensure their ability to consistently output stable electrical signals during the stretching and contraction processes, thereby highlighting their practical application potential. Our work provides a new research strategy for toughening ionogels and promotes the development of mechanically interlocked materials.
离子凝胶因其独特的离子导电性和热稳定性作为多功能材料受到了广泛关注。然而,许多现有离子凝胶相对较弱的机械性能阻碍了它们更广泛的应用。在此,我们通过将离子液体与机械键相结合来开发坚固、坚韧且抗冲击的机械互锁网络离子凝胶(MINs),这种机械键在保持结构稳定性的同时能够耗散能量。受益于机械互锁网络动态而稳定的特性,MINs表现出高拉伸强度(9.6兆帕)、断裂能(39千焦/平方米)和韧性(25.9兆焦/平方米),以及高伸长率(473%)和出色的抗冲击性与形状记忆性能,其整体性能超过了大多数已报道的离子凝胶。此外,在用于监测爬行机器人步态的应变传感器应用中,MINs的韧性和坚固性确保了它们在拉伸和收缩过程中能够持续输出稳定的电信号,从而突出了它们的实际应用潜力。我们的工作为增强离子凝胶提供了一种新的研究策略,并推动了机械互锁材料的发展。