文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Construction of an lncRNA-mediated ceRNA network to investigate the inflammatory regulatory mechanisms of ischemic stroke.

作者信息

Xu Meimei, Yuan Shan, Luo Xing, Xu Mengsi, Hu Guangze, He Zhe, Yang Xinyuan, Gao Rui

机构信息

Department of Biochemistry, College of Medicine, Shihezi University, Shihezi, Xinjiang, China.

State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, Xinjiang, China.

出版信息

PLoS One. 2025 Jan 23;20(1):e0317710. doi: 10.1371/journal.pone.0317710. eCollection 2025.


DOI:10.1371/journal.pone.0317710
PMID:39847586
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11756804/
Abstract

Long non-coding RNAs (lncRNAs) are among the most abundant types of non-coding RNAs in the genome and exhibit particularly high expression levels in the brain, where they play crucial roles in various neurophysiological and neuropathological processes. Although ischemic stroke is a complex multifactorial disease, the involvement of brain-derived lncRNAs in its intricate regulatory networks remains inadequately understood. In this study, we established a cerebral ischemia-reperfusion injury model using middle cerebral artery occlusion (MCAO) in male Sprague-Dawley rats. High-throughput sequencing was performed to profile the expression of cortical lncRNAs post-stroke, with subsequent validation using RT-PCR and qRT-PCR. Among the 31,183 lncRNAs detected in the rat cerebral cortex, 551 were differentially expressed between the MCAO and sham-operated groups in the ipsilateral cortex (fold change ≥2.0, P < 0.05). An integrated analysis of the 20 most abundant and significantly differentially expressed lncRNAs (DELs) identified 25 core cytoplasmic DELs, which were used to construct an interaction network based on their targeting relationships. This led to the establishment of a comprehensive lncRNA-miRNA-mRNA regulatory network comprising 12 lncRNAs, 16 sponge miRNAs, and 191 target mRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that differentially expressed mRNAs (DEmRNAs) were significantly enriched in stroke-related pathways. Our analysis predicted four key lncRNAs, four miRNAs, and eleven crucial mRNAs involved in post-transcriptional regulation through competing endogenous RNA (ceRNA) mechanisms. These molecules were shown to participate extensively in post-stroke processes, including angiogenesis, axonal regeneration, inflammatory responses, microglial activation, blood-brain barrier (BBB) disruption, apoptosis, autophagy, ferroptosis, and thrombocytopenia. These findings highlight the role of lncRNAs as multi-level regulators in the complex network of post-stroke mechanisms, providing novel insights into the pathophysiological processes of stroke.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88f5/11756804/60288b55dc3d/pone.0317710.g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88f5/11756804/be1943021524/pone.0317710.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88f5/11756804/90bbe9bda458/pone.0317710.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88f5/11756804/daacf62f2d17/pone.0317710.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88f5/11756804/6bb56d7ccdc5/pone.0317710.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88f5/11756804/6f2e9d4ec978/pone.0317710.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88f5/11756804/52ff8ecd2b63/pone.0317710.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88f5/11756804/9d9cfda64498/pone.0317710.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88f5/11756804/c05e45409a34/pone.0317710.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88f5/11756804/aef158026d23/pone.0317710.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88f5/11756804/5c9251783d12/pone.0317710.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88f5/11756804/a9784cf39796/pone.0317710.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88f5/11756804/8c49e7cb29f8/pone.0317710.g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88f5/11756804/60288b55dc3d/pone.0317710.g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88f5/11756804/be1943021524/pone.0317710.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88f5/11756804/90bbe9bda458/pone.0317710.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88f5/11756804/daacf62f2d17/pone.0317710.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88f5/11756804/6bb56d7ccdc5/pone.0317710.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88f5/11756804/6f2e9d4ec978/pone.0317710.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88f5/11756804/52ff8ecd2b63/pone.0317710.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88f5/11756804/9d9cfda64498/pone.0317710.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88f5/11756804/c05e45409a34/pone.0317710.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88f5/11756804/aef158026d23/pone.0317710.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88f5/11756804/5c9251783d12/pone.0317710.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88f5/11756804/a9784cf39796/pone.0317710.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88f5/11756804/8c49e7cb29f8/pone.0317710.g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88f5/11756804/60288b55dc3d/pone.0317710.g013.jpg

相似文献

[1]
Construction of an lncRNA-mediated ceRNA network to investigate the inflammatory regulatory mechanisms of ischemic stroke.

PLoS One. 2025-1-23

[2]
Excavating novel diagnostic and prognostic long non-coding RNAs (lncRNAs) for head and neck squamous cell carcinoma: an integrated bioinformatics analysis of competing endogenous RNAs (ceRNAs) and gene co-expression networks.

Bioengineered. 2021-12

[3]
Comprehensive Analysis of lncRNA Expression Pattern and lncRNA-miRNA-mRNA Network in a Rat Model With Cavernous Nerve Injury Erectile Dysfunction.

J Sex Med. 2020-7-13

[4]
Reconstruction of the lncRNA-miRNA-mRNA network based on competitive endogenous RNA reveals functional miRNAs and lncRNAs in burns and keloids.

PLoS One. 2025-4-9

[5]
Comprehensive analysis of lncRNA expression profiles in rats with cerebral ischemia-reperfusion injury after treatment with 20()-ginsenoside Rg3.

J Integr Neurosci. 2022-1-28

[6]
Comprehensive analysis of lncRNA-miRNA-mRNA networks during osteogenic differentiation of bone marrow mesenchymal stem cells.

BMC Genomics. 2022-6-7

[7]
Construction and Comprehensive Analysis of Dysregulated Long Noncoding RNA-Associated Competing Endogenous RNA Network in Moyamoya Disease.

Comput Math Methods Med. 2020

[8]
Reconstruction of the lncRNA-miRNA-mRNA network based on competitive endogenous RNA reveal functional lncRNAs in Cerebral Infarction.

Sci Rep. 2019-8-21

[9]
Bioinformatics analysis of a long non‑coding RNA and mRNA regulation network in rats with middle cerebral artery occlusion based on RNA sequencing.

Mol Med Rep. 2019-5-27

[10]
Deep Sequencing of the Rat MCAO Cortexes Reveals Crucial circRNAs Involved in Early Stroke Events and Their Regulatory Networks.

Neural Plast. 2021

引用本文的文献

[1]
Identification of a potential miRNA-mRNA regulatory network for ischemic stroke by using bioinformatics methods: a retrospective study based on the Gene Expression Omnibus database.

Front Immunol. 2025-4-14

本文引用的文献

[1]
miR-497-5p promoted neuronal injury in ischemic stroke by inhibiting the BDNF/TrkB/PI3K/Akt pathway.

Gen Physiol Biophys. 2024-3

[2]
Multi-Omics Profiling Identifies Microglial Annexin A2 as a Key Mediator of NF-κB Pro-inflammatory Signaling in Ischemic Reperfusion Injury.

Mol Cell Proteomics. 2024-2

[3]
Identification of lncRNA-miRNA-mRNA ceRNA network as biomarkers for acute kidney injury.

Am J Transl Res. 2023-9-15

[4]
Disulfidptosis-associated lncRNAs predict breast cancer subtypes.

Sci Rep. 2023-9-27

[5]
Essential genes Ptgs2, Tlr4, and Ccr2 regulate neuro-inflammation during the acute phase of cerebral ischemic in mice.

Sci Rep. 2023-8-10

[6]
BAG3 Overexpression Attenuates Ischemic Stroke Injury by Activating Autophagy and Inhibiting Apoptosis.

Stroke. 2023-8

[7]
protects against ischemic stroke by targeting .

Ann Transl Med. 2023-1-31

[8]
Influence of ZFHX3 Polymorphisms on the Risk of Ischemic Stroke in Chinese Han Population.

Cardiovasc Toxicol. 2023-2

[9]
Whole-transcriptome RNA sequencing reveals the global molecular responses and circRNA/lncRNA-miRNA-mRNA ceRNA regulatory network in chicken fat deposition.

Poult Sci. 2022-11

[10]
MiR-22-3p in exosomes increases the risk of heart failure after down-regulation of FURIN.

Chem Biol Drug Des. 2023-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索