文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

二硫键相关长非编码 RNA 预测乳腺癌亚型。

Disulfidptosis-associated lncRNAs predict breast cancer subtypes.

机构信息

Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang, China.

College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China.

出版信息

Sci Rep. 2023 Sep 27;13(1):16268. doi: 10.1038/s41598-023-43414-1.


DOI:10.1038/s41598-023-43414-1
PMID:37758759
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10533517/
Abstract

Disulfidptosis is a newly discovered mode of cell death. However, its relationship with breast cancer subtypes remains unclear. In this study, we aimed to construct a disulfidptosis-associated breast cancer subtype prediction model. We obtained 19 disulfidptosis-related genes from published articles and performed correlation analysis with lncRNAs differentially expressed in breast cancer. We then used the random forest algorithm to select important lncRNAs and establish a breast cancer subtype prediction model. We identified 132 lncRNAs significantly associated with disulfidptosis (FDR < 0.01, |R|> 0.15) and selected the first four important lncRNAs to build a prediction model (training set AUC = 0.992). The model accurately predicted breast cancer subtypes (test set AUC = 0.842). Among the key lncRNAs, LINC02188 had the highest expression in the Basal subtype, while LINC01488 and GATA3-AS1 had the lowest expression in Basal. In the Her2 subtype, LINC00511 had the highest expression level compared to other key lncRNAs. GATA3-AS1 had the highest expression in LumA and LumB subtypes, while LINC00511 had the lowest expression in these subtypes. In the Normal subtype, GATA3-AS1 had the highest expression level compared to other key lncRNAs. Our study also found that key lncRNAs were closely related to RNA methylation modification and angiogenesis (FDR < 0.05, |R|> 0.1), as well as immune infiltrating cells (P.adj < 0.01, |R|> 0.1). Our random forest model based on disulfidptosis-related lncRNAs can accurately predict breast cancer subtypes and provide a new direction for research on clinical therapeutic targets for breast cancer.

摘要

细胞死亡的新模式——二硫键程序性细胞死亡(Disulfidptosis)与乳腺癌亚型的关系尚不清楚。本研究旨在构建与二硫键程序性细胞死亡相关的乳腺癌亚型预测模型。我们从已发表的文章中获得了 19 个与二硫键程序性细胞死亡相关的基因,并对乳腺癌中差异表达的 lncRNAs 进行了相关性分析。然后,我们使用随机森林算法选择重要的 lncRNA,并建立乳腺癌亚型预测模型。我们确定了 132 个与二硫键程序性细胞死亡显著相关的 lncRNA(FDR<0.01,|R|>0.15),并选择前四个重要的 lncRNA 构建预测模型(训练集 AUC=0.992)。该模型准确预测了乳腺癌亚型(测试集 AUC=0.842)。在关键 lncRNA 中,LINC02188 在基底样亚型中表达最高,而 LINC01488 和 GATA3-AS1 在基底样亚型中表达最低。在 Her2 亚型中,LINC00511 的表达水平高于其他关键 lncRNA。GATA3-AS1 在 LumA 和 LumB 亚型中表达最高,而 LINC00511 在这些亚型中表达最低。在正常样亚型中,GATA3-AS1 的表达水平高于其他关键 lncRNA。我们的研究还发现,关键 lncRNA 与 RNA 甲基化修饰和血管生成(FDR<0.05,|R|>0.1)以及免疫浸润细胞(P.adj<0.01,|R|>0.1)密切相关。我们基于二硫键程序性细胞死亡相关 lncRNA 的随机森林模型可以准确预测乳腺癌亚型,为乳腺癌临床治疗靶点的研究提供了新方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cad6/10533517/9419290ae237/41598_2023_43414_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cad6/10533517/90bc932fdb00/41598_2023_43414_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cad6/10533517/cfcbb475c3e5/41598_2023_43414_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cad6/10533517/a99a0edc033d/41598_2023_43414_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cad6/10533517/9419290ae237/41598_2023_43414_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cad6/10533517/90bc932fdb00/41598_2023_43414_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cad6/10533517/cfcbb475c3e5/41598_2023_43414_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cad6/10533517/a99a0edc033d/41598_2023_43414_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cad6/10533517/9419290ae237/41598_2023_43414_Fig4_HTML.jpg

相似文献

[1]
Disulfidptosis-associated lncRNAs predict breast cancer subtypes.

Sci Rep. 2023-9-27

[2]
Disulfidptosis-associated LncRNAs index predicts prognosis and chemotherapy drugs sensitivity in cervical cancer.

Sci Rep. 2023-8-1

[3]
Integrative landscape analysis of prognostic model biomarkers and immunogenomics of disulfidptosis-related genes in breast cancer based on LASSO and WGCNA analyses.

J Cancer Res Clin Oncol. 2023-12

[4]
Cuproptosis-associated ncRNAs predict breast cancer subtypes.

PLoS One. 2024

[5]
A novel prognostic model associated with the overall survival in patients with breast cancer based on lipid metabolism-related long noncoding RNAs.

J Clin Lab Anal. 2022-6

[6]
Identification of Long Noncoding RNAs as Predictors of Survival in Triple-Negative Breast Cancer Based on Network Analysis.

Biomed Res Int. 2020-3-3

[7]
Construction and Validation of a Reliable Disulfidptosis-Related LncRNAs Signature of the Subtype, Prognostic, and Immune Landscape in Colon Cancer.

Int J Mol Sci. 2023-8-18

[8]
Establishment of disulfidptosis-related LncRNA signature as biomarkers in colon adenocarcinoma.

Cancer Cell Int. 2024-5-27

[9]
Oncogenic long noncoding RNA landscape in breast cancer.

Mol Cancer. 2017-7-24

[10]
A disulfidptosis-related lncRNA prognostic model to predict survival and response to immunotherapy in lung adenocarcinoma.

Front Pharmacol. 2023-9-25

引用本文的文献

[1]
Molecular signatures of disulfidptosis: interplay with programmed cell death pathways and therapeutic implications in oncology.

Cell Mol Biol Lett. 2025-6-2

[2]
Identification of disulfidptosis-related genes and subgroups in spinal cord injury.

Spinal Cord. 2025-5-4

[3]
Disulfidptosis in tumor progression.

Cell Death Discov. 2025-4-28

[4]
Based on disulfidptosis, unveiling the prognostic and immunological signatures of Asian hepatocellular carcinoma and identifying the potential therapeutic target ZNF337-AS1.

Discov Oncol. 2025-4-17

[5]
Identification of mitochondrial permeability transition-related lncRNAs as quantitative biomarkers for the prognosis and therapy of breast cancer.

Front Genet. 2025-3-26

[6]
Construction of an lncRNA-mediated ceRNA network to investigate the inflammatory regulatory mechanisms of ischemic stroke.

PLoS One. 2025-1-23

[7]
Determining new disulfidptosis-associated lncRNA signatures pertinent to breast cancer prognosis and immunological microenvironment.

Transl Cancer Res. 2024-11-30

[8]
Probable Molecular Targeting of Inhibitory Effect of Carvacrol-Loaded Bovine Serum Albumin Nanoparticles on Human Breast Adenocarcinoma Cells.

Chin J Integr Med. 2025-4

[9]
Development of a disulfidptosis-related prognostic model for endometrial cancer with potential therapeutic target.

Discov Oncol. 2024-10-4

[10]
Comprehensive identification of a disulfidptosis-associated long non-coding RNA signature to predict the prognosis and treatment options in ovarian cancer.

Front Endocrinol (Lausanne). 2024

本文引用的文献

[1]
Disulfidptosis: a new target for metabolic cancer therapy.

J Exp Clin Cancer Res. 2023-4-27

[2]
Actin cytoskeleton vulnerability to disulfide stress mediates disulfidptosis.

Nat Cell Biol. 2023-3

[3]
m5C regulator-mediated modification patterns and tumor microenvironment infiltration characterization in colorectal cancer: One step closer to precision medicine.

Front Immunol. 2022

[4]
Efficient Model for Coronary Artery Disease Diagnosis: A Comparative Study of Several Machine Learning Algorithms.

J Healthc Eng. 2022

[5]
Investigation of the Role of PUFA Metabolism in Breast Cancer Using a Rank-Based Random Forest Algorithm.

Cancers (Basel). 2022-9-25

[6]
Genetic Structure of the Endangered Coral Cladocora caespitosa Matches the Main Bioregions of the Mediterranean Sea.

Front Genet. 2022-7-26

[7]
Global Increase in Breast Cancer Incidence: Risk Factors and Preventive Measures.

Biomed Res Int. 2022

[8]
A Novel m1A-Score Model Correlated With the Immune Microenvironment Predicts Prognosis in Hepatocellular Carcinoma.

Front Immunol. 2022

[9]
Feature importance: Opening a soil-transmitted helminth machine learning model via SHAP.

Infect Dis Model. 2022-2-3

[10]
ADCK2 Knockdown Affects the Migration of Melanoma Cells via MYL6.

Cancers (Basel). 2022-2-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索