Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang, China.
College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China.
Sci Rep. 2023 Sep 27;13(1):16268. doi: 10.1038/s41598-023-43414-1.
Disulfidptosis is a newly discovered mode of cell death. However, its relationship with breast cancer subtypes remains unclear. In this study, we aimed to construct a disulfidptosis-associated breast cancer subtype prediction model. We obtained 19 disulfidptosis-related genes from published articles and performed correlation analysis with lncRNAs differentially expressed in breast cancer. We then used the random forest algorithm to select important lncRNAs and establish a breast cancer subtype prediction model. We identified 132 lncRNAs significantly associated with disulfidptosis (FDR < 0.01, |R|> 0.15) and selected the first four important lncRNAs to build a prediction model (training set AUC = 0.992). The model accurately predicted breast cancer subtypes (test set AUC = 0.842). Among the key lncRNAs, LINC02188 had the highest expression in the Basal subtype, while LINC01488 and GATA3-AS1 had the lowest expression in Basal. In the Her2 subtype, LINC00511 had the highest expression level compared to other key lncRNAs. GATA3-AS1 had the highest expression in LumA and LumB subtypes, while LINC00511 had the lowest expression in these subtypes. In the Normal subtype, GATA3-AS1 had the highest expression level compared to other key lncRNAs. Our study also found that key lncRNAs were closely related to RNA methylation modification and angiogenesis (FDR < 0.05, |R|> 0.1), as well as immune infiltrating cells (P.adj < 0.01, |R|> 0.1). Our random forest model based on disulfidptosis-related lncRNAs can accurately predict breast cancer subtypes and provide a new direction for research on clinical therapeutic targets for breast cancer.
细胞死亡的新模式——二硫键程序性细胞死亡(Disulfidptosis)与乳腺癌亚型的关系尚不清楚。本研究旨在构建与二硫键程序性细胞死亡相关的乳腺癌亚型预测模型。我们从已发表的文章中获得了 19 个与二硫键程序性细胞死亡相关的基因,并对乳腺癌中差异表达的 lncRNAs 进行了相关性分析。然后,我们使用随机森林算法选择重要的 lncRNA,并建立乳腺癌亚型预测模型。我们确定了 132 个与二硫键程序性细胞死亡显著相关的 lncRNA(FDR<0.01,|R|>0.15),并选择前四个重要的 lncRNA 构建预测模型(训练集 AUC=0.992)。该模型准确预测了乳腺癌亚型(测试集 AUC=0.842)。在关键 lncRNA 中,LINC02188 在基底样亚型中表达最高,而 LINC01488 和 GATA3-AS1 在基底样亚型中表达最低。在 Her2 亚型中,LINC00511 的表达水平高于其他关键 lncRNA。GATA3-AS1 在 LumA 和 LumB 亚型中表达最高,而 LINC00511 在这些亚型中表达最低。在正常样亚型中,GATA3-AS1 的表达水平高于其他关键 lncRNA。我们的研究还发现,关键 lncRNA 与 RNA 甲基化修饰和血管生成(FDR<0.05,|R|>0.1)以及免疫浸润细胞(P.adj<0.01,|R|>0.1)密切相关。我们基于二硫键程序性细胞死亡相关 lncRNA 的随机森林模型可以准确预测乳腺癌亚型,为乳腺癌临床治疗靶点的研究提供了新方向。
Sci Rep. 2023-9-27
Cancer Cell Int. 2024-5-27
Mol Cancer. 2017-7-24
Spinal Cord. 2025-5-4
Cell Death Discov. 2025-4-28
J Exp Clin Cancer Res. 2023-4-27
Nat Cell Biol. 2023-3
Infect Dis Model. 2022-2-3
Cancers (Basel). 2022-2-20