Abdelsattar Montaser, A Ismeil Mohamed, Menoufi Karim, AbdelMoety Ahmed, Emad-Eldeen Ahmed
Department of Electrical Engineering, Faculty of Engineering, South Valley University, Qena, Egypt.
Electrical Engineering Department, Faculty of Engineering, King Khalid University, Abha, Saudi Arabia.
PLoS One. 2025 Jan 23;20(1):e0317619. doi: 10.1371/journal.pone.0317619. eCollection 2025.
This study presents a comprehensive comparative analysis of Machine Learning (ML) and Deep Learning (DL) models for predicting Wind Turbine (WT) power output based on environmental variables such as temperature, humidity, wind speed, and wind direction. Along with Artificial Neural Network (ANN), Long Short-Term Memory (LSTM), Recurrent Neural Network (RNN), and Convolutional Neural Network (CNN), the following ML models were looked at: Linear Regression (LR), Support Vector Regressor (SVR), Random Forest (RF), Extra Trees (ET), Adaptive Boosting (AdaBoost), Categorical Boosting (CatBoost), Extreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LightGBM). Using a dataset of 40,000 observations, the models were assessed based on R-squared, Mean Absolute Error (MAE), and Root Mean Square Error (RMSE). ET achieved the highest performance among ML models, with an R-squared value of 0.7231 and a RMSE of 0.1512. Among DL models, ANN demonstrated the best performance, achieving an R-squared value of 0.7248 and a RMSE of 0.1516. The results show that DL models, especially ANN, did slightly better than the best ML models. This means that they are better at modeling non-linear dependencies in multivariate data. Preprocessing techniques, including feature scaling and parameter tuning, improved model performance by enhancing data consistency and optimizing hyperparameters. When compared to previous benchmarks, the performance of both ANN and ET demonstrates significant predictive accuracy gains in WT power output forecasting. This study's novelty lies in directly comparing a diverse range of ML and DL algorithms while highlighting the potential of advanced computational approaches for renewable energy optimization.
本研究对基于温度、湿度、风速和风向等环境变量预测风力涡轮机(WT)功率输出的机器学习(ML)和深度学习(DL)模型进行了全面的比较分析。除了人工神经网络(ANN)、长短期记忆网络(LSTM)、循环神经网络(RNN)和卷积神经网络(CNN)外,还研究了以下ML模型:线性回归(LR)、支持向量回归器(SVR)、随机森林(RF)、极端随机树(ET)、自适应提升(AdaBoost)、分类提升(CatBoost)、极端梯度提升(XGBoost)和轻量级梯度提升机(LightGBM)。使用一个包含40000个观测值的数据集,基于决定系数(R平方)、平均绝对误差(MAE)和均方根误差(RMSE)对这些模型进行了评估。在ML模型中,ET表现最佳,其R平方值为0.7231,RMSE为0.1512。在DL模型中,ANN表现最佳,R平方值为0.7248,RMSE为0.1516。结果表明,DL模型,尤其是ANN,比最佳ML模型略胜一筹。这意味着它们在对多变量数据中的非线性依赖关系进行建模方面表现更好。包括特征缩放和参数调整在内的预处理技术通过增强数据一致性和优化超参数提高了模型性能。与之前的基准相比,ANN和ET在WT功率输出预测方面的性能都有显著提高。本研究的新颖之处在于直接比较了多种ML和DL算法,并突出了先进计算方法在可再生能源优化方面的潜力。