Suppr超能文献

使用机器学习模型的堆叠回归器集成来提高基于分子印迹聚合物的电化学传感器的预测性能。

Enhancing the Predictive Performance of Molecularly Imprinted Polymer-Based Electrochemical Sensors Using a Stacking Regressor Ensemble of Machine Learning Models.

作者信息

Dashtaki Reza Mohammadi, Dashtaki Saeed Mohammadi, Heydari-Bafrooei Esmaeil, Piran Md Jalil

机构信息

Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.

School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran 1439957131, Iran.

出版信息

ACS Sens. 2025 Apr 25;10(4):3123-3133. doi: 10.1021/acssensors.5c00364. Epub 2025 Apr 17.

Abstract

The performance of electrochemical sensors is influenced by various factors. To enhance the effectiveness of these sensors, it is crucial to find the right balance among these factors. Researchers and engineers continually explore innovative approaches to enhance sensitivity, selectivity, and reliability. Machine learning (ML) techniques facilitate the analysis and predictive modeling of sensor performance by establishing quantitative relationships between parameters and their effects. This work presents a case study on developing a molecularly imprinted polymer (MIP)-based sensor for detecting doxorubicin (Dox), emphasizing the use of ML-based ensemble models to improve performance and reliability. Four ML models, including Decision Tree (DT), eXtreme Gradient Boosting (XGBoost), Random Forest (RF), and K-Nearest Neighbors (KNN), are used to evaluate the effect of each parameter on prediction performance, using the SHapley Additive exPlanations (SHAP) method to determine feature importance. Based on the analysis, removing a less influential feature and introducing a new feature significantly improved the model's predictive capabilities. By applying the min-max scaling technique, it is ensured that all features contribute proportionally to the model learning process. Additionally, multiple ML models─Linear Regression (LR), KNN, DT, RF, Adaptive Boosting (AdaBoost), Gradient Boosting (GB), Support Vector Regression (SVR), XGBoost, Bagging, Partial Least Squares (PLS), and Ridge Regression─are applied to the data set and their performance in predicting the sensor output current is compared. To further enhance prediction performance, a novel ensemble model is proposed that integrates DT, RF, GB, XGBoost, and Bagging regressors, leveraging their combined strengths to offset individual weaknesses. The main benefit of this work lies in its ability to enhance MIP-based sensor performance by developing a novel stacking regressor ensemble model, which improves prediction performance and reliability. This methodology is broadly applicable to the development of other sensors with different transducers and sensing elements. Through extensive simulation results, the proposed stacking regressor ensemble model demonstrated superior predictive performance compared to individual ML models. The model achieved an -squared () of 0.993, significantly reducing the root-mean-square error (RMSE) to 0.436 and the mean absolute error (MAE) to 0.244. These improvements enhanced sensitivity and reliability of the MIP-based electrochemical sensor, demonstrating a substantial performance gain over individual ML models.

摘要

电化学传感器的性能受多种因素影响。为提高这些传感器的效能,在这些因素之间找到恰当平衡至关重要。研究人员和工程师不断探索创新方法来提高灵敏度、选择性和可靠性。机器学习(ML)技术通过建立参数与其影响之间的定量关系,促进了传感器性能的分析和预测建模。这项工作展示了一个关于开发用于检测阿霉素(Dox)的基于分子印迹聚合物(MIP)的传感器的案例研究,强调使用基于ML的集成模型来提高性能和可靠性。使用包括决策树(DT)、极端梯度提升(XGBoost)、随机森林(RF)和K近邻(KNN)在内的四种ML模型,通过SHapley Additive exPlanations(SHAP)方法评估每个参数对预测性能的影响,以确定特征重要性。基于分析,去除一个影响较小的特征并引入一个新特征显著提高了模型的预测能力。通过应用最小 - 最大缩放技术,确保所有特征对模型学习过程做出成比例的贡献。此外,将多个ML模型——线性回归(LR)、KNN、DT、RF、自适应提升(AdaBoost)、梯度提升(GB)、支持向量回归(SVR)、XGBoost、装袋法、偏最小二乘法(PLS)和岭回归——应用于数据集,并比较它们在预测传感器输出电流方面的性能。为进一步提高预测性能,提出了一种新颖的集成模型,该模型整合了DT、RF、GB、XGBoost和装袋回归器,利用它们的综合优势来弥补各自的弱点。这项工作的主要益处在于能够通过开发一种新颖的堆叠回归器集成模型来提高基于MIP的传感器性能,从而提高预测性能和可靠性。这种方法广泛适用于开发具有不同换能器和传感元件的其他传感器。通过广泛的仿真结果,所提出的堆叠回归器集成模型与单个ML模型相比表现出卓越的预测性能。该模型的决定系数( )达到0.993,显著将均方根误差(RMSE)降低到0.436,平均绝对误差(MAE)降低到0.244。这些改进提高了基于MIP的电化学传感器的灵敏度和可靠性,与单个ML模型相比展示了显著的性能提升。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验