Elvatun Severin, Knoors Daan, Brant Simon, Jonasson Christian, Nygård Jan F
Cancer Registry of Norway, Norwegian Institute of Public health, Ullernchausseen 64, 0379 Oslo, Norway.
NordicRWE, Universitetsgata 2, 0164 Oslo, Norway.
PLOS Digit Health. 2025 Jan 23;4(1):e0000581. doi: 10.1371/journal.pdig.0000581. eCollection 2025 Jan.
An external control arm based on health registry data can serve as an alternative comparator in single-arm drug development studies that lack a benchmark for comparison to the experimental treatment. However, accessing such observational healthcare data involves a lengthy and intricate application process, delaying drug approval studies and access to novel treatments. Clinical trials typically comprise only a few hundred patients usually with high-cardinality features, which makes individual data instances more exposed to re-identification attacks. We examine whether synthetic data can serve as a proxy for the empirical control arm data by providing the same research outcomes while reducing the risk of information disclosure. We propose a reversible data generalization procedure to address these particular data characteristics that can be used in conjunction with any generator algorithm. It reduces the input data cardinality pre-synthesis and reverses it post-synthesis to regain the original data structure. Finally, we test a selection of state-of-the-art generators against a suite of utility and privacy metrics. The external control arm benchmark was generated using data from Norwegian health registries. In this retrospective study, we compare various synthetic data generation algorithms in numerical experiments, focusing on the utility of the synthetic data to support the conclusions drawn from the empirical data, and analysing the risk of sensitive information disclosure. Our results indicate that data generalization is advantageous to enhance both data utility and privacy in smaller datasets with high cardinality. Moreover, the generator algorithms demonstrate the ability to generate synthetic data of high utility without compromising the confidentiality of the empirical data. Our finding suggests that synthetic external control arms could serve as a viable alternative to observational data in drug development studies, while reducing the risk of revealing sensitive patient information.
在缺乏与实验性治疗进行比较基准的单臂药物研发研究中,基于健康登记数据的外部对照臂可作为替代对照。然而,获取此类观察性医疗数据涉及漫长而复杂的申请过程,会延迟药物审批研究以及新型治疗方法的获取。临床试验通常仅包含几百名具有高基数特征的患者,这使得个体数据实例更容易受到重新识别攻击。我们研究合成数据是否可以通过提供相同的研究结果同时降低信息泄露风险,来替代经验性对照臂数据。我们提出一种可逆数据泛化程序来处理这些特定的数据特征,该程序可与任何生成器算法结合使用。它在合成前降低输入数据的基数,并在合成后将其反转以恢复原始数据结构。最后,我们针对一系列效用和隐私指标测试了一些最先进的生成器。外部对照臂基准是使用挪威健康登记处的数据生成的。在这项回顾性研究中,我们在数值实验中比较了各种合成数据生成算法,重点关注合成数据的效用以支持从经验数据得出的结论,并分析敏感信息泄露的风险。我们的结果表明,数据泛化有利于在具有高基数的较小数据集中提高数据效用和隐私性。此外,生成器算法展示了在不损害经验数据保密性的情况下生成高效用合成数据的能力。我们的发现表明,合成外部对照臂可以作为药物研发研究中观察性数据的可行替代方案,同时降低泄露患者敏感信息的风险。