Suppr超能文献

孪生辅助分类器生成对抗网络

Twin Auxiliary Classifiers GAN.

作者信息

Gong Mingming, Xu Yanwu, Li Chunyuan, Zhang Kun, Batmanghelich Kayhan

机构信息

Department of Biomedical Informatics, University of Pittsburgh.

Department of Philosophy, Carnegie Mellon University.

出版信息

Adv Neural Inf Process Syst. 2019 Dec;32:1328-1337.

Abstract

Conditional generative models enjoy remarkable progress over the past few years. One of the popular conditional models is Auxiliary Classifier GAN (AC-GAN), which generates highly discriminative images by extending the loss function of GAN with an auxiliary classifier. However, the diversity of the generated samples by AC-GAN tends to decrease as the number of classes increases, hence limiting its power on large-scale data. In this paper, we identify the source of the low diversity issue theoretically and propose a practical solution to solve the problem. We show that the auxiliary classifier in AC-GAN imposes perfect separability, which is disadvantageous when the supports of the class distributions have significant overlap. To address the issue, we propose Twin Auxiliary Classifiers Generative Adversarial Net (TAC-GAN) that further benefits from a new player that interacts with other players (the generator and the discriminator) in GAN. Theoretically, we demonstrate that TAC-GAN can effectively minimize the divergence between the generated and real-data distributions. Extensive experimental results show that our TAC-GAN can successfully replicate the true data distributions on simulated data, and significantly improves the diversity of class-conditional image generation on real datasets.

摘要

条件生成模型在过去几年取得了显著进展。一种流行的条件模型是辅助分类器生成对抗网络(AC-GAN),它通过用辅助分类器扩展生成对抗网络(GAN)的损失函数来生成具有高度判别力的图像。然而,随着类别数量的增加,AC-GAN生成样本的多样性往往会降低,从而限制了其在大规模数据上的能力。在本文中,我们从理论上确定了低多样性问题的根源,并提出了一个实际的解决方案来解决该问题。我们表明,AC-GAN中的辅助分类器施加了完美可分性,当类别分布的支持集有显著重叠时,这是不利的。为了解决这个问题,我们提出了双辅助分类器生成对抗网络(TAC-GAN),它进一步受益于一个在GAN中与其他参与者(生成器和判别器)相互作用的新参与者。从理论上,我们证明了TAC-GAN可以有效地最小化生成数据分布与真实数据分布之间的差异。大量实验结果表明,我们的TAC-GAN可以成功地在模拟数据上复制真实数据分布,并显著提高真实数据集上类别条件图像生成的多样性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b34d/7042662/c9d640675a86/nihms-1068485-f0001.jpg

相似文献

1
Twin Auxiliary Classifiers GAN.孪生辅助分类器生成对抗网络
Adv Neural Inf Process Syst. 2019 Dec;32:1328-1337.
2
Triple Generative Adversarial Networks.三重生成对抗网络
IEEE Trans Pattern Anal Mach Intell. 2022 Dec;44(12):9629-9640. doi: 10.1109/TPAMI.2021.3127558. Epub 2022 Nov 7.
4
Image Clustering Using an Augmented Generative Adversarial Network and Information Maximization.使用增强生成对抗网络和信息最大化的图像聚类
IEEE Trans Neural Netw Learn Syst. 2022 Dec;33(12):7461-7474. doi: 10.1109/TNNLS.2021.3085125. Epub 2022 Nov 30.

引用本文的文献

1
Synthetic data as external control arms in scarce single-arm clinical trials.在稀缺的单臂临床试验中,将合成数据用作外部对照臂。
PLOS Digit Health. 2025 Jan 23;4(1):e0000581. doi: 10.1371/journal.pdig.0000581. eCollection 2025 Jan.
2
Semi-Implicit Denoising Diffusion Models (SIDDMs).半隐式去噪扩散模型(SIDDMs)。
Adv Neural Inf Process Syst. 2023 Dec;36:17383-17394. Epub 2024 May 30.
4
Generative-Discriminative Complementary Learning.生成-判别互补学习
Proc AAAI Conf Artif Intell. 2020 Feb;34(4):6526-6533. doi: 10.1609/aaai.v34i04.6126.

本文引用的文献

1
On the Effectiveness of Least Squares Generative Adversarial Networks.最小二乘生成对抗网络的有效性。
IEEE Trans Pattern Anal Mach Intell. 2019 Dec;41(12):2947-2960. doi: 10.1109/TPAMI.2018.2872043. Epub 2018 Sep 24.
2
StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks.StackGAN++:基于堆叠生成对抗网络的逼真图像合成
IEEE Trans Pattern Anal Mach Intell. 2019 Aug;41(8):1947-1962. doi: 10.1109/TPAMI.2018.2856256. Epub 2018 Jul 16.
3
Ensemble estimators for multivariate entropy estimation.用于多元熵估计的集成估计器。
IEEE Trans Inf Theory. 2013 Jul;59(7):4374-4388. doi: 10.1109/TIT.2013.2251456.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验