Yang Jinping, Balutowski Adam, Trivedi Megan, Wencewicz Timothy A
Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States.
Biochemistry. 2025 Feb 4;64(3):719-734. doi: 10.1021/acs.biochem.4c00749. Epub 2025 Jan 23.
Branch-point syntheses in nonribosomal peptide assembly are rare but useful strategies to generate tripodal peptides with advantageous hexadentate iron-chelating capabilities, as seen in siderophores. However, the chemical logic underlying the peptide branching by nonribosomal peptide synthetase (NRPS) often remains complex and elusive. Here, we review the common strategies for the biosynthesis of branched nonribosomal peptides (NRPs) and present our biochemical investigation on the NRPS-catalyzed assembly of fimsbactin A, a branched mixed-ligand siderophore produced by the human pathogenic strain . We untangled the unusual branching mechanism of fimsbactin A biosynthesis through a combination of bioinformatics, site-directed mutagenesis, reconstitution, molecular modeling, and molecular dynamics simulation. Our findings clarify the roles of the fimsbactin NRPS enzymes, uncovering catalytically redundant domains and identifying the multifunctional nature of the FbsF cyclization (Cy) domain. We demonstrate the dynamic interplay between l-serine and 2,3-dihydroxybenzoic acid derived dipeptides, partitioning between amide and ester forms via a 1,2--to--acyl shift orchestrated by the noncanonical, multichannel FbsF Cy domain. The branching event occurs in a secondary condensation event facilitated by this Cy domain with two dipeptidyl intermediates, which generates a branched tetrapeptide thioester. Finally, the terminal condensation domain of FbsG recruits a soluble nucleophile to release the final product. This study advances our understanding of the intricate biosynthetic pathways and chemical logic employed by NRPSs, shedding light on the mechanisms underlying the synthesis of complex branched peptides.
非核糖体肽组装中的分支点合成是罕见但有用的策略,可生成具有有利六齿铁螯合能力的三脚架肽,如在铁载体中所见。然而,非核糖体肽合成酶(NRPS)介导的肽分支背后的化学逻辑通常仍然复杂且难以捉摸。在这里,我们综述了分支非核糖体肽(NRP)生物合成的常见策略,并展示了我们对由人类致病菌株产生的分支混合配体铁载体fimsbactin A的NRPS催化组装的生化研究。我们通过生物信息学、定点诱变、重组、分子建模和分子动力学模拟相结合的方法,解开了fimsbactin A生物合成异常的分支机制。我们的研究结果阐明了fimsbactin NRPS酶的作用,揭示了催化冗余结构域,并确定了FbsF环化(Cy)结构域的多功能性质。我们展示了l-丝氨酸和2,3-二羟基苯甲酸衍生的二肽之间的动态相互作用,通过由非经典多通道FbsF Cy结构域精心安排的1,2-酰基转移在酰胺和酯形式之间进行分配。分支事件发生在由该Cy结构域促进的二级缩合事件中,该事件涉及两个二肽基中间体,生成一个分支四肽硫酯。最后,FbsG的末端缩合结构域募集一个可溶性亲核试剂以释放最终产物。这项研究推进了我们对NRPS所采用的复杂生物合成途径和化学逻辑的理解,揭示了复杂分支肽合成背后的机制。