Zeng Wanjuan, Luo Heping, Liang Bo, Chen Sha, Zhang Zihan, Jia Wenqing, Xu Han, Qing Yan, Wu Yiqiang
College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004 PR China.
College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004 PR China.
J Colloid Interface Sci. 2025 May;685:331-341. doi: 10.1016/j.jcis.2025.01.143. Epub 2025 Jan 18.
Interface engineering and electronic modulation enable precise tuning of the electronic structure, thereby maximizing the efficacy of active sites and significantly enhancing the activity and stability of the electrocatalyst. Herein, a hybrid material composed of Ni-modified CoS nanoparticles ((Co, Ni)S) encapsulated within an N, S co-doped carbon matrix (SNC) and anchored onto S-doped carbonized wood fibers (SCWF) is synthesized using a straightforward simultaneous carbonization and sulfidation approach. Density functional theory (DFT) calculations reveal that the highly electronegative Ni element promotes electron cloud migration from Co to Ni, shifting the d-band center of Co closer to the Fermi level. This Ni modification induces a synergistic effect, optimizing the internal electronic structure of the central Co metal site and enhancing intermediate adsorption. Additionally, the N, S co-doped carbon encapsulation structure and the anchoring effect of SCWF protect (Co, Ni)S nanoparticles from agglomeration during the catalytic process, resulting in excellent long-term operational stability. Consequently, an ultralow potential of 1.34 V (vs reversible hydrogen electrode, RHE) is sufficient to achieve a current density of 50 mA cm with remarkable stability. The (Co, Ni)S@SNC/SCWF material exhibits superior urea oxidation reaction (UOR) activity and long-term stability compared to recently reported electrocatalysts. For overall urea splitting, an electrolyzed utilizing UOR instead of oxygen evolution reaction (OER) requires only 1.47 V to reach 50 mA cm with excellent stability, which is 220 mV less than the HER||OER system. This research sets the foundation for developing highly efficient UOR electrocatalysts, offering significant potential for advancing energy-efficient hydrogen generation from renewable sources.
界面工程和电子调制能够精确调节电子结构,从而使活性位点的功效最大化,并显著提高电催化剂的活性和稳定性。在此,采用一种简单的同时碳化和硫化方法合成了一种混合材料,该材料由包裹在N、S共掺杂碳基质(SNC)中并锚定在S掺杂碳化木纤维(SCWF)上的Ni改性CoS纳米颗粒((Co, Ni)S)组成。密度泛函理论(DFT)计算表明,高电负性的Ni元素促进电子云从Co向Ni迁移,使Co的d带中心更接近费米能级。这种Ni改性诱导了协同效应,优化了中心Co金属位点的内部电子结构并增强了中间体吸附。此外,N、S共掺杂碳封装结构和SCWF的锚定作用可保护(Co, Ni)S纳米颗粒在催化过程中不发生团聚,从而具有出色的长期运行稳定性。因此,1.34 V(相对于可逆氢电极,RHE)的超低电位足以实现50 mA cm的电流密度,且具有显著的稳定性。与最近报道的电催化剂相比,(Co, Ni)S@SNC/SCWF材料表现出优异的尿素氧化反应(UOR)活性和长期稳定性。对于整体尿素分解,利用UOR而非析氧反应(OER)的电解仅需1.47 V即可达到50 mA cm,且具有出色的稳定性,比HER||OER系统低220 mV。这项研究为开发高效UOR电催化剂奠定了基础,为推进可再生能源高效制氢提供了巨大潜力。