Suppr超能文献

慢性肾脏病的个性化护理:超越传统生物标志物

Personalized Care in CKD: Moving Beyond Traditional Biomarkers.

作者信息

McDonnell Thomas, Banks Rosamonde E, Taal Maarten W, Vuilleumier Nicolas, Kalra Philip A

机构信息

Donal O'Donoghue Renal Research Centre, Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Salford, UK.

Division of Cardiovascular Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK.

出版信息

Nephron. 2025;149(6):339-357. doi: 10.1159/000543640. Epub 2025 Jan 23.

Abstract

BACKGROUND

Traditional biomarkers, such as estimated glomerular filtration rate (eGFR) and urine albumin-to-creatinine ratio (uACR), have long been central to chronic kidney disease (CKD) diagnosis and management, leading to a standardized CKD classification system. However, these biomarkers are non-specific and fail to capture the heterogeneity within CKD and the nuances of an individual's disease mechanism, limiting personalized treatment approaches. There is an increasing need for novel biomarkers that reflect the diverse pathophysiological processes underlying CKD progression, enabling more precise risk prediction and treatment strategies.

SUMMARY

This review examines the limitations of current CKD biomarkers and classification systems, highlighting the need for a precision medicine approach. While traditional markers like eGFR and uACR are foundational, they inadequately capture CKD's complexity. Emerging biomarkers offer insights into specific disease processes, such as inflammation, oxidative stress, fibrosis, and tubular injury, which are crucial for personalized care. The article discusses the potential benefits of integrating these novel biomarkers into clinical practice, including more accurate risk prediction, tailored treatments, and personalized clinical trial designs, as well as the barriers to their implementation. Furthermore, advancements in multi-omics and high-throughput techniques offer opportunities to identify novel causative proteins with druggable targets, pushing CKD care towards greater precision.

KEY MESSAGES

Current CKD classification systems, based on non-specific biomarkers, fail to capture CKD's heterogeneity. Incorporating biomarkers reflecting diverse pathophysiological mechanisms can enhance risk prediction, customized treatments, and personalized clinical trials. High-throughput multi-omic techniques present a promising path towards precision medicine in nephrology.

摘要

背景

传统生物标志物,如估计肾小球滤过率(eGFR)和尿白蛋白与肌酐比值(uACR),长期以来一直是慢性肾脏病(CKD)诊断和管理的核心,促成了标准化的CKD分类系统。然而,这些生物标志物缺乏特异性,无法反映CKD的异质性以及个体疾病机制的细微差别,限制了个性化治疗方法。越来越需要能够反映CKD进展背后多种病理生理过程的新型生物标志物,以实现更精确的风险预测和治疗策略。

总结

本综述探讨了当前CKD生物标志物和分类系统的局限性,强调了精准医学方法的必要性。虽然eGFR和uACR等传统标志物是基础,但它们不足以体现CKD的复杂性。新兴生物标志物有助于深入了解特定的疾病过程,如炎症、氧化应激、纤维化和肾小管损伤,这对个性化医疗至关重要。本文讨论了将这些新型生物标志物整合到临床实践中的潜在益处,包括更准确的风险预测、个性化治疗和个性化临床试验设计,以及实施过程中的障碍。此外,多组学和高通量技术的进步为识别具有可成药靶点的新型致病蛋白提供了机会,推动CKD治疗走向更高的精准度。

关键信息

基于非特异性生物标志物的当前CKD分类系统无法体现CKD的异质性。纳入反映多种病理生理机制的生物标志物可以加强风险预测、定制治疗和个性化临床试验。高通量多组学技术为肾脏病学的精准医学提供了一条有前景的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdb1/12136532/eae392cd4a7c/nef-2025-0149-0006-543640_F01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验