Qiu Ruizhi
Institute of Materials, China Academy of Engineering Physics, Mianyang, Sichuan 621907, China.
J Chem Theory Comput. 2025 Feb 11;21(3):1360-1368. doi: 10.1021/acs.jctc.4c01520. Epub 2025 Jan 24.
Hubbard-corrected density-functional theory (DFT+) is widely employed to predict the physical properties of correlated materials; however, reliable predictions can be hindered by the presence of metastable solutions in the DFT+ calculations. This issue stems from the orbital physics inherent in DFT+. To address this, we propose a method to circumvent metastable states by applying a random orbital-dependent local perturbation to the localized orbitals. This perturbation lifts the orbital degeneracy within the corrective functional of DFT+, ensuring that the system converges to a low-energy state. We validate this approach by comparing it with results obtained using an occupation matrix control scheme in several test cases, including PuO, UO, β-PuO, and NiO.
哈伯德修正密度泛函理论(DFT+)被广泛用于预测关联材料的物理性质;然而,DFT+计算中存在的亚稳态解可能会阻碍可靠的预测。这个问题源于DFT+中固有的轨道物理。为了解决这个问题,我们提出了一种方法,通过对局域轨道应用随机的轨道相关局部微扰来规避亚稳态。这种微扰消除了DFT+校正泛函内的轨道简并性,确保系统收敛到低能态。我们通过在几个测试案例(包括PuO、UO、β-PuO和NiO)中,将该方法与使用占据矩阵控制方案获得的结果进行比较,来验证这种方法。