Jaworski Damian, Suwała Karolina, Kaluzny Bartlomiej J, Kaluzny Jakub J
Division of Ophthalmology and Optometry, Department of Ophthalmology, Collegium Medicum, Nicolaus Copernicus University, ul. Kornela Ujejskiego, Bydgoszcz, Poland.
Oftalmika Eye Hospital, Bydgoszcz, Poland.
Front Neurol. 2025 Jan 9;15:1426205. doi: 10.3389/fneur.2024.1426205. eCollection 2024.
Glaucoma is a leading cause of blindness, often progressing asymptomatically until significant vision loss occurs. Early detection is crucial for preventing irreversible damage. The pupillary light reflex (PLR) has proven useful in glaucoma diagnosis, and mobile technologies like the AI-based smartphone pupillometer (AI Pupillometer) offer a promising solution for accessible screening. This study assesses the reliability of the AI Pupillometer in detecting glaucoma.
In Experiment 1, 20 healthy participants were assessed using both the AI Pupillometer and the NPi-200 device to evaluate equivalence in measuring PLR. Each eye underwent three trials. Experiment 2 included 46 participants, 24 with primary open-angle glaucoma (POAG) and 22 healthy controls. PLR measurements from the AI Pupillometer were correlated with structural and functional ocular parameters. An additional study expanded the sample to 387 participants (103 glaucoma patients, 284 controls), focusing on differential pupillometry parameters to minimize ambient light interference.
In Experiment 1, the AI Pupillometer demonstrated strong correlations with the NPi-200 in key parameters like initial pupil size ( = 0.700), constricted pupil size ( = 0.755), and constriction velocity ( = 0.541), confirming its reliability. In Experiment 2, although no statistically significant differences in light-corrected PLR parameters were found between groups, glaucoma patients had a marginally higher constricted pupil size ( = 0.1632). Significant correlations were observed between pupillometry and advanced ocular imaging results, notably between constriction amplitude and visual field loss. The additional study revealed significant differences in constriction amplitude ( = 0.014) and relative pupil size change ( = 0.0072) between glaucoma patients and controls, reinforcing the AI Pupillometer's diagnostic potential.
This study confirms the AI Pupillometer as a reliable, accessible tool for glaucoma screening. Mobile diagnostics could enhance early detection, improving outcomes for glaucoma patients.
青光眼是导致失明的主要原因之一,通常在无症状的情况下逐渐发展,直至出现严重视力丧失。早期检测对于预防不可逆损害至关重要。瞳孔对光反射(PLR)已被证明在青光眼诊断中有用,基于人工智能的智能手机瞳孔计(AI瞳孔计)等移动技术为可及的筛查提供了一个有前景的解决方案。本研究评估了AI瞳孔计在检测青光眼方面的可靠性。
在实验1中,使用AI瞳孔计和NPi - 200设备对20名健康参与者进行评估,以评估测量PLR的等效性。每只眼睛进行三次试验。实验2包括46名参与者,24名原发性开角型青光眼(POAG)患者和22名健康对照。AI瞳孔计的PLR测量值与眼部结构和功能参数相关。另一项研究将样本扩大到387名参与者(103名青光眼患者,284名对照),重点关注差异瞳孔测量参数以最小化环境光干扰。
在实验1中,AI瞳孔计在初始瞳孔大小( = 0.700)、收缩后瞳孔大小( = 0.755)和收缩速度( = 0.541)等关键参数上与NPi - 200显示出强相关性,证实了其可靠性。在实验2中,尽管两组之间在光校正PLR参数上未发现统计学上的显著差异,但青光眼患者的收缩后瞳孔大小略高( = 0.1632)。在瞳孔测量与高级眼部成像结果之间观察到显著相关性,特别是收缩幅度与视野缺损之间。额外的研究揭示了青光眼患者和对照组在收缩幅度( = 0.014)和相对瞳孔大小变化( = 0.0072)上的显著差异,加强了AI瞳孔计的诊断潜力。
本研究证实AI瞳孔计是一种可靠、可及的青光眼筛查工具。移动诊断可以加强早期检测,改善青光眼患者的治疗结果。