Suppr超能文献

曼巴表格:一种用于学习表格数据的即插即用模型。

MambaTab: A Plug-and-Play Model for Learning Tabular Data.

作者信息

Ahamed Md Atik, Cheng Qiang

机构信息

Department of Computer Science, University of Kentucky, Lexington, KY, USA.

Institute for Biomedical Informatics University of Kentucky, Lexington, KY, USA.

出版信息

Proc (IEEE Conf Multimed Inf Process Retr). 2024 Aug;2024:369-375. doi: 10.1109/mipr62202.2024.00065. Epub 2024 Oct 15.

Abstract

Despite the prevalence of images and texts in machine learning, tabular data remains widely used across various domains. Existing deep learning models, such as convolutional neural networks and transformers, perform well however demand extensive preprocessing and tuning limiting accessibility and scalability. This work introduces an innovative approach based on a structured state-space model (SSM), MambaTab, for tabular data. SSMs have strong capabilities for efficiently extracting effective representations from data with long-range dependencies. MambaTab leverages Mamba, an emerging SSM variant, for end-to-end supervised learning on tables. Compared to state-of-the-art baselines, MambaTab delivers superior performance while requiring significantly fewer parameters, as empirically validated on diverse benchmark datasets. MambaTab's efficiency, scalability, generalizability, and predictive gains signify it as a lightweight, "plug-and-play" solution for diverse tabular data with promise for enabling wider practical applications.

摘要

尽管图像和文本在机器学习中很普遍,但表格数据在各个领域仍被广泛使用。现有的深度学习模型,如卷积神经网络和Transformer,表现良好,但需要大量的预处理和调优,限制了其可访问性和可扩展性。这项工作引入了一种基于结构化状态空间模型(SSM)的创新方法MambaTab来处理表格数据。状态空间模型具有强大的能力,能够有效地从具有长程依赖关系的数据中提取有效表示。MambaTab利用新兴的状态空间模型变体Mamba进行表格的端到端监督学习。与最先进的基线相比,MambaTab在需要显著更少参数的情况下提供了卓越的性能,这在各种基准数据集上得到了实证验证。MambaTab的效率、可扩展性、通用性和预测增益表明它是一种轻量级的“即插即用”解决方案,适用于各种表格数据,有望实现更广泛的实际应用。

相似文献

1
MambaTab: A Plug-and-Play Model for Learning Tabular Data.曼巴表格:一种用于学习表格数据的即插即用模型。
Proc (IEEE Conf Multimed Inf Process Retr). 2024 Aug;2024:369-375. doi: 10.1109/mipr62202.2024.00065. Epub 2024 Oct 15.
3
Deep Neural Networks and Tabular Data: A Survey.深度神经网络与表格数据:一项综述。
IEEE Trans Neural Netw Learn Syst. 2024 Jun;35(6):7499-7519. doi: 10.1109/TNNLS.2022.3229161. Epub 2024 Jun 3.
10
Learning long sequences in spiking neural networks.在脉冲神经网络中学习长序列。
Sci Rep. 2024 Sep 20;14(1):21957. doi: 10.1038/s41598-024-71678-8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验