Deng Yihe, Zhang Ruochi, Xu Pan, Ma Jian, Gu Quanquan
Department of Computer Science, University of California, Los Angeles, CA 90095, USA.
Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
bioRxiv. 2023 Oct 2:2023.10.01.560404. doi: 10.1101/2023.10.01.560404.
Hypergraphs are powerful tools for modeling complex interactions across various domains, including biomedicine. However, learning meaningful node representations from hypergraphs remains a challenge. Existing supervised methods often lack generalizability, thereby limiting their real-world applications. We propose a new method, Pre-trained Hypergraph Convolutional Neural Networks with Self-supervised Learning (PhyGCN), which leverages hypergraph structure for self-supervision to enhance node representations. PhyGCN introduces a unique training strategy that integrates variable hyperedge sizes with self-supervised learning, enabling improved generalization to unseen data. Applications on multi-way chromatin interactions and polypharmacy side-effects demonstrate the effectiveness of PhyGCN. As a generic framework for high-order interaction datasets with abundant unlabeled data, PhyGCN holds strong potential for enhancing hypergraph node representations across various domains.
超图是用于对包括生物医学在内的各个领域中的复杂相互作用进行建模的强大工具。然而,从超图中学习有意义的节点表示仍然是一个挑战。现有的监督方法通常缺乏通用性,从而限制了它们在现实世界中的应用。我们提出了一种新方法,即具有自监督学习的预训练超图卷积神经网络(PhyGCN),它利用超图结构进行自监督以增强节点表示。PhyGCN引入了一种独特的训练策略,该策略将可变超边大小与自监督学习相结合,从而能够更好地泛化到未见数据。在多路染色质相互作用和多药副作用方面的应用证明了PhyGCN的有效性。作为具有大量未标记数据的高阶相互作用数据集的通用框架,PhyGCN在增强跨各个领域的超图节点表示方面具有强大的潜力。