Suppr超能文献

PhyGCN:具有自监督学习的预训练超图卷积神经网络

PhyGCN: Pre-trained Hypergraph Convolutional Neural Networks with Self-supervised Learning.

作者信息

Deng Yihe, Zhang Ruochi, Xu Pan, Ma Jian, Gu Quanquan

机构信息

Department of Computer Science, University of California, Los Angeles, CA 90095, USA.

Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA.

出版信息

bioRxiv. 2023 Oct 2:2023.10.01.560404. doi: 10.1101/2023.10.01.560404.

Abstract

Hypergraphs are powerful tools for modeling complex interactions across various domains, including biomedicine. However, learning meaningful node representations from hypergraphs remains a challenge. Existing supervised methods often lack generalizability, thereby limiting their real-world applications. We propose a new method, Pre-trained Hypergraph Convolutional Neural Networks with Self-supervised Learning (PhyGCN), which leverages hypergraph structure for self-supervision to enhance node representations. PhyGCN introduces a unique training strategy that integrates variable hyperedge sizes with self-supervised learning, enabling improved generalization to unseen data. Applications on multi-way chromatin interactions and polypharmacy side-effects demonstrate the effectiveness of PhyGCN. As a generic framework for high-order interaction datasets with abundant unlabeled data, PhyGCN holds strong potential for enhancing hypergraph node representations across various domains.

摘要

超图是用于对包括生物医学在内的各个领域中的复杂相互作用进行建模的强大工具。然而,从超图中学习有意义的节点表示仍然是一个挑战。现有的监督方法通常缺乏通用性,从而限制了它们在现实世界中的应用。我们提出了一种新方法,即具有自监督学习的预训练超图卷积神经网络(PhyGCN),它利用超图结构进行自监督以增强节点表示。PhyGCN引入了一种独特的训练策略,该策略将可变超边大小与自监督学习相结合,从而能够更好地泛化到未见数据。在多路染色质相互作用和多药副作用方面的应用证明了PhyGCN的有效性。作为具有大量未标记数据的高阶相互作用数据集的通用框架,PhyGCN在增强跨各个领域的超图节点表示方面具有强大的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2ea/10592843/f6551a49287c/nihpp-2023.10.01.560404v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验