Pentz Henry Kelbrick, Warford Thomas, Timokhin Ivan, Zhou Hongpeng, Yang Qian, Bhattacharya Anupam, Mishchenko Artem
Department of Physics and Astronomy, the University of Manchester, Manchester, UK.
Department of Computer Science, the University of Manchester, Manchester, UK.
Commun Phys. 2025;8(1):25. doi: 10.1038/s42005-025-01936-2. Epub 2025 Jan 17.
Two-dimensional materials with flat electronic bands are promising for realising exotic quantum phenomena such as unconventional superconductivity and nontrivial topology. However, exploring their vast chemical space is a significant challenge. Here we introduce elf, an unsupervised convolutional autoencoder that encodes electronic band structure images into fingerprint vectors, enabling the autonomous clustering of materials by electronic properties beyond traditional chemical paradigms. Unsupervised visualisation of the fingerprint space then uncovers hidden chemical trends and identifies promising candidates based on similarities to well-studied exemplars. This approach complements high-throughput ab initio methods by rapidly screening candidates and guiding further investigations into the mechanisms underlying flat-band physics. The elf autoencoder is a powerful tool for autonomous discovery of unexplored flat-band materials, enabling unbiased identification of compounds with desirable electronic properties across the 2D chemical space.
具有平坦电子能带的二维材料有望实现奇异的量子现象,如非常规超导和非平凡拓扑。然而,探索它们广阔的化学空间是一项重大挑战。在此,我们引入了elf,这是一种无监督卷积自动编码器,它将电子能带结构图像编码为指纹向量,从而能够根据超越传统化学范式的电子特性对材料进行自主聚类。对指纹空间进行无监督可视化,进而揭示隐藏的化学趋势,并根据与深入研究的范例的相似性识别出有前景的候选材料。这种方法通过快速筛选候选材料并指导对平带物理潜在机制的进一步研究,对高通量从头算方法起到补充作用。elf自动编码器是自主发现未探索的平带材料的强大工具,能够在二维化学空间中无偏差地识别具有理想电子特性的化合物。