Suppr超能文献

交叉熵测试允许对 t-SNE 和 UMAP 表示进行定量统计比较。

A cross entropy test allows quantitative statistical comparison of t-SNE and UMAP representations.

机构信息

Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.

VIB Center for Brain and Disease Research, 3000 Leuven, Belgium.

出版信息

Cell Rep Methods. 2023 Jan 13;3(1):100390. doi: 10.1016/j.crmeth.2022.100390. eCollection 2023 Jan 23.

Abstract

The advent of high-dimensional single-cell data has necessitated the development of dimensionality-reduction tools. t-Distributed stochastic neighbor embedding (t-SNE) and uniform manifold approximation and projection (UMAP) are the two most frequently used approaches, allowing clear visualization of complex single-cell datasets. Despite the need for quantitative comparison, t-SNE and UMAP have largely remained visualization tools due to the lack of robust statistical approaches. Here, we have derived a statistical test for evaluating the difference between dimensionality-reduced datasets using the Kolmogorov-Smirnov test on the distributions of cross entropy of single cells within each dataset. As the approach uses the inter-relationship of single cells for comparison, the resulting statistic is robust and capable of identifying true biological variation. Further, the test provides a valid distance between single-cell datasets, allowing the organization of multiple samples into a dendrogram for quantitative comparison of complex datasets. These results demonstrate the largely untapped potential of dimensionality-reduction tools for biomedical data analysis beyond visualization.

摘要

高维单细胞数据的出现使得降维工具的发展成为必要。 t 分布随机邻域嵌入(t-SNE)和一致流形逼近和投影(UMAP)是两种最常用的方法,允许对复杂的单细胞数据集进行清晰的可视化。尽管需要进行定量比较,但由于缺乏稳健的统计方法,t-SNE 和 UMAP 在很大程度上仍然是可视化工具。在这里,我们使用每个数据集中单细胞的交叉熵分布的柯尔莫哥洛夫-斯米尔诺夫检验,推导出了一种用于评估降维后数据集之间差异的统计检验方法。由于该方法使用单细胞的相互关系进行比较,因此所得统计量是稳健的,并且能够识别真正的生物学变异。此外,该检验提供了单细胞数据集之间的有效距离,允许将多个样本组织成一个 dendrogram,以便对复杂数据集进行定量比较。这些结果表明,除了可视化之外,降维工具在生物医学数据分析方面还有很大的潜力尚未被挖掘。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验