Li Bing, Yang Yanru, Shen Feng, Wang Yuelei, Wang Ting, Chen Xiaxia, Lu Chun
Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), 266033 Qingdao, Shandong, China.
Science and Education Training Department, Zibo Medical Emergency Command Center, 255000 Zibo, Shandong, China.
Discov Med. 2025 Jan;37(192):55-63. doi: 10.24976/Discov.Med.202537192.5.
Osteoporotic fractures (OPF) pose a public health issue, imposing significant burdens on families and societies worldwide. Currently, there is a lack of comprehensive and validated risk assessment models for OPF. This study aims to develop a model to assess and predict the risk of OPF in Qingdao City, China.
From January 2021 to January 2023, we recruited 84 osteoporotic patients diagnosed with fractures from Qingdao University Affiliated Hospital, Qingdao Municipal Hospital, Qingdao Hiser Hospital Affiliated of Qingdao University, and Qingdao Central Hospital as the experimental group. In addition, 112 osteoporotic patients without fractures were recruited as the control group. In this study, we employed seven machine learning models, namely Adaboost, random forest (RF), K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Logistic Regression (LR), Naive Bayes (NB), and Gradient Boosting Decision Trees (GBDT), to analyze the risk factors influencing the occurrence of OPF. Next, we plotted receiver operating characteristic (ROC), Precision-Recall (PR), and calibration curves to evaluate the predictive values of the different risk assessment models for OPF.
Among the seven models built based on the training set data, the Adaboost model showed area under the curve (AUC), sensitivity, and specificity values close to 1, indicating the best classification performance. In the test set, the AUC values for the RF, SVM, LR, KNN, NB, AdaBoost, and GBDT models were 0.936, 0.905, 0.88, 0.93, 0.862, 0.939, and 0.859, respectively ( < 0.001). All sensitivity and specificity values for these models were higher than 0.8, with sensitivity and specificity values of the Adaboost model closest to 1. Additionally, six models had an area under the Precision-Recall curve (prAUC) values higher than 0.9, except KNN at 0.284 ( < 0.001). The calibration curves of the seven models did not significantly deviate from the ideal curve, indicating acceptable discriminative ability and predictive performance of the predictive model. All results showed that trabecular bone score (TBS) was the most important variable affecting the model, followed by osteocalcin (OST) and hunchback.
Given the various clinical data from patients with OPF, we assessed and demonstrated the good predictive performance of our risk predictive models. This model will enable us to take timely intervention measures to reduce the incidence of OPF and improve patient prognosis.
骨质疏松性骨折(OPF)是一个公共卫生问题,给全球家庭和社会带来了沉重负担。目前,缺乏全面且经过验证的OPF风险评估模型。本研究旨在建立一个模型,用于评估和预测中国青岛市OPF的风险。
2021年1月至2023年1月,我们招募了84例来自青岛大学附属医院、青岛市立医院、青岛大学附属海慈医院和青岛市中心医院且被诊断为骨折的骨质疏松患者作为实验组。此外,招募了112例无骨折的骨质疏松患者作为对照组。在本研究中,我们使用了七种机器学习模型,即自适应增强(Adaboost)、随机森林(RF)、K近邻(KNN)、支持向量机(SVM)、逻辑回归(LR)、朴素贝叶斯(NB)和梯度提升决策树(GBDT),来分析影响OPF发生的风险因素。接下来,我们绘制了受试者工作特征(ROC)曲线、精确率-召回率(PR)曲线和校准曲线来评估不同风险评估模型对OPF的预测价值。
在基于训练集数据构建的七个模型中,Adaboost模型显示曲线下面积(AUC)、敏感性和特异性值接近1,表明其分类性能最佳。在测试集中,RF、SVM、LR、KNN、NB、AdaBoost和GBDT模型的AUC值分别为0.936、0.905、0.88、0.93、0.862、0.939和0.859(P<0.001)。这些模型的所有敏感性和特异性值均高于0.8,其中Adaboost模型的敏感性和特异性值最接近1。此外除KNN的精确率-召回率曲线下面积(prAUC)值为0.284外(P<0.001)其他六个模型该值均高于0.9。七个模型的校准曲线与理想曲线无显著偏差,表明预测模型具有可接受的判别能力和预测性能。所有结果表明,骨小梁评分(TBS)是影响模型的最重要变量,其次是骨钙素(OST)和驼背。
鉴于OPF患者的各种临床数据,我们评估并证明了我们的风险预测模型具有良好的预测性能该模型将使我们能够及时采取干预措施降低OPF的发病率并改善患者预后。