Suppr超能文献

用于成人弥漫性胶质瘤分子诊断和预测基因事件的胶质瘤图像水平和载玻片水平基因预测器(GLISP)

Glioma Image-Level and Slide-Level Gene Predictor (GLISP) for Molecular Diagnosis and Predicting Genetic Events of Adult Diffuse Glioma.

作者信息

Le Minh-Khang, Kawai Masataka, Masui Kenta, Komori Takashi, Kawamata Takakazu, Muragaki Yoshihiro, Inoue Tomohiro, Tahara Ippei, Kasai Kazunari, Kondo Tetsuo

机构信息

Department of Pathology, University of Yamanashi, Yamanashi 409-3898, Japan.

Department of Pathology, Tokyo Women's Medical University, Tokyo 162-8666, Japan.

出版信息

Bioengineering (Basel). 2024 Dec 27;12(1):12. doi: 10.3390/bioengineering12010012.

Abstract

The latest World Health Organization (WHO) classification of central nervous system tumors (WHO2021/5th) has incorporated molecular information into the diagnosis of each brain tumor type including diffuse glioma. Therefore, an artificial intelligence (AI) framework for learning histological patterns and predicting important genetic events would be useful for future studies and applications. Using the concept of multiple-instance learning, we developed an AI framework named GLioma Image-level and Slide-level gene Predictor (GLISP) to predict nine genetic abnormalities in hematoxylin and eosin sections: , , mutations, promoter mutations, homozygous deletion (CHD), amplification (amp), 7 gain/10 loss (7+/10-), 1p/19q co-deletion, and promoter methylation. GLISP consists of a pair of patch-level GLISP-P and patient-level GLISP-W models, each pair of which is for a genetic prediction task, providing flexibility in clinical utility. In this study, the Cancer Genome Atlas whole-slide images (WSIs) were used to train the model. A total of 108 WSIs from the Tokyo Women's Medical University were used as the external dataset. In cross-validation, GLISP yielded patch-level/case-level predictions with top performances in and 1p/19q co-deletion with average areas under the curve (AUCs) of receiver operating characteristics of 0.75/0.79 and 0.73/0.80, respectively. In external validation, the patch-level/case-level AUCs of and 1p/19q co-deletion detection were 0.76/0.83 and 0.78/0.88, respectively. The accuracy in diagnosing IDH-mutant astrocytoma, oligodendroglioma, and IDH-wild-type glioblastoma was 0.66, surpassing the human pathologist average of 0.62 (0.54-0.67). In conclusion, GLISP is a two-stage AI framework for histology-based prediction of genetic events in adult gliomas, which is helpful in providing essential information for WHO 2021 molecular diagnoses.

摘要

世界卫生组织(WHO)最新的中枢神经系统肿瘤分类(WHO2021/第5版)已将分子信息纳入包括弥漫性胶质瘤在内的每种脑肿瘤类型的诊断中。因此,一个用于学习组织学模式并预测重要基因事件的人工智能(AI)框架将对未来的研究和应用有用。利用多实例学习的概念,我们开发了一个名为胶质瘤图像级和玻片级基因预测器(GLISP)的AI框架,以预测苏木精和伊红切片中的九种基因异常: 、 、 突变、 启动子突变、 纯合缺失(CHD)、 扩增(amp)、7号染色体增益/10号染色体缺失(7+/10-)、1p/19q共缺失以及 启动子甲基化。GLISP由一对补丁级的GLISP-P模型和患者级的GLISP-W模型组成,每对模型用于一项基因预测任务,在临床应用中提供了灵活性。在本研究中,使用癌症基因组图谱全玻片图像(WSIs)来训练模型。来自东京女子医科大学的总共108张WSIs被用作外部数据集。在交叉验证中,GLISP在 以及1p/19q共缺失方面产生了补丁级/病例级预测,其受试者操作特征曲线下面积(AUCs)分别为0.75/0.79和0.73/0.80,表现出色。在外部验证中, 以及1p/19q共缺失检测的补丁级/病例级AUCs分别为0.76/0.83和0.78/0.88。诊断IDH突变型星形细胞瘤、少突胶质细胞瘤和IDH野生型胶质母细胞瘤的准确率为0.66,超过了人类病理学家的平均水平0.62(0.54 - 0.67)。总之,GLISP是一个用于基于组织学预测成人胶质瘤基因事件的两阶段AI框架,有助于为WHO 2021分子诊断提供重要信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c895/11761954/9c27821572cc/bioengineering-12-00012-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验