文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于全切片病理图像深度学习的神经病理学家级别的成人弥漫性胶质瘤的综合分类。

Neuropathologist-level integrated classification of adult-type diffuse gliomas using deep learning from whole-slide pathological images.

机构信息

Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.

Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

出版信息

Nat Commun. 2023 Oct 11;14(1):6359. doi: 10.1038/s41467-023-41195-9.


DOI:10.1038/s41467-023-41195-9
PMID:37821431
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10567721/
Abstract

Current diagnosis of glioma types requires combining both histological features and molecular characteristics, which is an expensive and time-consuming procedure. Determining the tumor types directly from whole-slide images (WSIs) is of great value for glioma diagnosis. This study presents an integrated diagnosis model for automatic classification of diffuse gliomas from annotation-free standard WSIs. Our model is developed on a training cohort (n = 1362) and a validation cohort (n = 340), and tested on an internal testing cohort (n = 289) and two external cohorts (n = 305 and 328, respectively). The model can learn imaging features containing both pathological morphology and underlying biological clues to achieve the integrated diagnosis. Our model achieves high performance with area under receiver operator curve all above 0.90 in classifying major tumor types, in identifying tumor grades within type, and especially in distinguishing tumor genotypes with shared histological features. This integrated diagnosis model has the potential to be used in clinical scenarios for automated and unbiased classification of adult-type diffuse gliomas.

摘要

目前,胶质瘤类型的诊断需要结合组织学特征和分子特征,这是一个昂贵且耗时的过程。直接从全切片图像(WSI)中确定肿瘤类型对胶质瘤的诊断具有重要价值。本研究提出了一种用于自动分类无注释标准 WSI 的弥漫性胶质瘤的综合诊断模型。我们的模型是在训练队列(n=1362)和验证队列(n=340)上开发的,并在内部测试队列(n=289)和两个外部队列(n=305 和 328)上进行了测试。该模型可以学习包含病理形态和潜在生物学线索的成像特征,以实现综合诊断。我们的模型在分类主要肿瘤类型、识别类型内的肿瘤分级以及特别是区分具有共享组织学特征的肿瘤基因型方面表现出了较高的性能,受试者工作特征曲线下面积均高于 0.90。这种综合诊断模型有可能在临床环境中用于自动和无偏分类成人型弥漫性胶质瘤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a14/10567721/4ce570c8dd13/41467_2023_41195_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a14/10567721/56f285a030fe/41467_2023_41195_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a14/10567721/f18ed41256e2/41467_2023_41195_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a14/10567721/da16873b8d9d/41467_2023_41195_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a14/10567721/4d982ea17528/41467_2023_41195_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a14/10567721/4ce570c8dd13/41467_2023_41195_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a14/10567721/56f285a030fe/41467_2023_41195_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a14/10567721/f18ed41256e2/41467_2023_41195_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a14/10567721/da16873b8d9d/41467_2023_41195_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a14/10567721/4d982ea17528/41467_2023_41195_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a14/10567721/4ce570c8dd13/41467_2023_41195_Fig5_HTML.jpg

相似文献

[1]
Neuropathologist-level integrated classification of adult-type diffuse gliomas using deep learning from whole-slide pathological images.

Nat Commun. 2023-10-11

[2]
Classification of Diffuse Glioma Subtype from Clinical-Grade Pathological Images Using Deep Transfer Learning.

Sensors (Basel). 2021-5-17

[3]
Deep Learning for Noninvasive Assessment of H3 K27M Mutation Status in Diffuse Midline Gliomas Using MR Imaging.

J Magn Reson Imaging. 2023-9

[4]
A transformer-based multi-task deep learning model for simultaneous infiltrated brain area identification and segmentation of gliomas.

Cancer Imaging. 2023-10-27

[5]
Deep Learning Glioma Grading with the Tumor Microenvironment Analysis Protocol for Comprehensive Learning, Discovering, and Quantifying Microenvironmental Features.

J Imaging Inform Med. 2024-8

[6]
Development and validation of artificial intelligence-based prescreening of large-bowel biopsies taken in the UK and Portugal: a retrospective cohort study.

Lancet Digit Health. 2023-11

[7]
Artificial intelligence neuropathologist for glioma classification using deep learning on hematoxylin and eosin stained slide images and molecular markers.

Neuro Oncol. 2021-1-30

[8]
Molecular Subtype Classification in Lower-Grade Glioma with Accelerated DTI.

AJNR Am J Neuroradiol. 2019-8-14

[9]
A comparative study for glioma classification using deep convolutional neural networks.

Math Biosci Eng. 2021-1-29

[10]
Automated glioma grading on conventional MRI images using deep convolutional neural networks.

Med Phys. 2020-7

引用本文的文献

[1]
Value of artificial intelligence in neuro-oncology.

Lancet Digit Health. 2025-8-8

[2]
Deep learning-driven brain tumor classification and segmentation using non-contrast MRI.

Sci Rep. 2025-7-30

[3]
Integrating pathomics and deep learning for subtyping uveal melanoma: identifying high-risk immune infiltration profiles.

Front Immunol. 2025-7-9

[4]
Large-vocabulary forensic pathological analyses via prototypical cross-modal contrastive learning.

Nat Commun. 2025-7-23

[5]
Applications of artificial intelligence in the analysis of histopathology images of gliomas: a review.

Npj Imaging. 2024-7-1

[6]
Predicting ustekinumab treatment response in Crohn's disease using pre-treatment biopsy images.

Bioinformatics. 2025-6-2

[7]
The clinical implications and interpretability of computational medical imaging (radiomics) in brain tumors.

Insights Imaging. 2025-3-30

[8]
MRI transformer deep learning and radiomics for predicting IDH wild type TERT promoter mutant gliomas.

NPJ Precis Oncol. 2025-3-27

[9]
Ligand-receptor interactions combined with histopathology for improved prognostic modeling in HPV-negative head and neck squamous cell carcinoma.

NPJ Precis Oncol. 2025-2-28

[10]
Glioma Image-Level and Slide-Level Gene Predictor (GLISP) for Molecular Diagnosis and Predicting Genetic Events of Adult Diffuse Glioma.

Bioengineering (Basel). 2024-12-27

本文引用的文献

[1]
Histopathological auxiliary system for brain tumour (HAS-Bt) based on weakly supervised learning using a WHO CNS5-style pipeline.

J Neurooncol. 2023-5

[2]
Artificial Intelligence-Assisted Classification of Gliomas Using Whole Slide Images.

Arch Pathol Lab Med. 2023-8-1

[3]
Benchmarking weakly-supervised deep learning pipelines for whole slide classification in computational pathology.

Med Image Anal. 2022-7

[4]
Artificial intelligence to identify genetic alterations in conventional histopathology.

J Pathol. 2022-7

[5]
Deep learning-enabled assessment of cardiac allograft rejection from endomyocardial biopsies.

Nat Med. 2022-3

[6]
Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis.

Nat Cancer. 2020-8

[7]
Development and validation of a weakly supervised deep learning framework to predict the status of molecular pathways and key mutations in colorectal cancer from routine histology images: a retrospective study.

Lancet Digit Health. 2021-12

[8]
Weakly supervised annotation-free cancer detection and prediction of genotype in routine histopathology.

J Pathol. 2022-1

[9]
Grading of adult diffuse gliomas according to the 2021 WHO Classification of Tumors of the Central Nervous System.

Lab Invest. 2022-2

[10]
Predicting prognosis and IDH mutation status for patients with lower-grade gliomas using whole slide images.

Sci Rep. 2021-8-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索